精英家教網 > 初中數學 > 題目詳情
如圖,拋物線y=
12
x2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)若將上述拋物線先向下平移3個單位,再向右平移2個單位,請直接寫出平移后的拋物線的解析式.
分析:(1)將A(-1,0)代入y=
1
2
x2+bx-2,即可解出b的值,從而得到函數的解析式,配方后即可求出D點坐標;
(2)根據平移規(guī)律,將函數的頂點式進行變化,得到線先向下平移3個單位,再向右平移2個單位的函數解析式,再展成一般式即可.
解答:解:(1)將A(-1,0)代入拋物線y=
1
2
x2+bx-2得,
1
2
×(-1)2-b-2=0,
解得,b=-
3
2
,
則函數解析式為y=
1
2
x2-
3
2
x-2.
配方得,y=
1
2
(x-
3
2
2-
25
8
,
可見,頂點坐標為(
3
2
,-
25
8
).

(2)將上述拋物線先向下平移3個單位,再向右平移2個單位,可得,
y=
1
2
(x-
3
2
-2)2-
25
8
-3
=
1
2
(x-
7
2
2-
49
8

=
1
2
x2-
7
2
x.
點評:本題考查了待定系數法求二次函數解析式、二次函數的性質、二次函數圖象與幾何變換,難度不大,但要細心.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,拋物線y=ax2+bx+c與x軸交于點A、B,與y軸交于點C,如果OB=OC=
1
2
OA,那么b的值為(  )
A、-2
B、-1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,拋物線y=x2+bx+c(b、c為常數)經過原點和E(3,0).
(1)求該拋物線所對應的函數關系式;
(2)設A是該拋物線上位于x軸下方、且在對稱軸左側的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值及此時點A的坐標;如果不存在,請說明理由;
③當B(
12
,0)時,x軸上是否存在兩點P、Q(點P在點Q的左邊),使得四邊形PQDA是菱形?若存在,請求出符合條件的所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線y=
12
(x+1)2-2
與x軸交于A、B兩點,P為該拋物線上一點,且滿足△PAB的面積等于4,這樣的點P有
3
3
個.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+
5
2
與直線ABy=
1
2
x+
1
2
交于x軸上的一點A,和另一點B(4,n).點P是拋物線A,B兩點間部分上的一個動點(不與點A,B重合),直線PQ與直線AB垂直,交直線AB于點Q,.
(1)求拋物線的解析式和cos∠BAO的值;
(2)設點P的橫坐標為m用含m的代數式表示線段PQ的長,并求出線段PQ長的最大值;
(3)點E是拋物線上一點,過點E作EF∥AC,交直線AB與點F,若以E、F、A、C為頂點的四邊形為平行四邊形,直接寫出相應的點E的坐標.

查看答案和解析>>

同步練習冊答案