已知如圖,梯形ABCD中,AD∥BC,以兩腰AB,CD為一邊分別向兩邊作正方形ABGE和DCHF,設(shè)線段AD的垂直平分線l交線段EF于點(diǎn)M,EP⊥l于P,F(xiàn)Q⊥l于Q.
求證:EP=FQ.
分析:過D作PN的平行線分別交FQ、BC于點(diǎn)K、I.可以證明△FKD≌△DIC,可以證得FQ=FK+KQ=DM+MN,與EP=AM+MN然后根據(jù)中垂線的性質(zhì)即可求證.
解答:解:過D作PN的平行線分別交FQ、BC于點(diǎn)K、L,設(shè)AD的垂直平分線交AD于N,
在△FKD與△DLC中,∠DFK=90°-∠FDK=∠CDL,∠FKD=∠DLC=90°,DF=DC,
∴△FKD≌△DLC,
∴FK=DL,
∴FQ=FK+KQ=DL+DN,
同理可得,EP=DL+AN,
又∵M(jìn)N為AD中垂線,
∴AN=ND,
∴EP=FQ
點(diǎn)評(píng):本題主要考查了中垂線的性質(zhì),以及全等三角形的判定,正確證明三角形全等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點(diǎn)B為中心,沿逆時(shí)針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點(diǎn)B、A、E恰好在同一條直線上,連接CE.
(1)則四邊形DBCE是
形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,請(qǐng)你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等腰梯形ABCD的邊BCx軸上,點(diǎn)Ay軸的正方向上,A( 0, 6 ),D ( 4,6),且AB=.

(1)求點(diǎn)B的坐標(biāo);

(2)求經(jīng)過( 。

A. B.D三點(diǎn)的拋物線的解析式;

(3)在(2)中所求的拋物線上是否存在一點(diǎn)P,使得S△ABC  = S梯形ABCD  ?若存在,請(qǐng)求出該點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點(diǎn)B為中心,沿逆時(shí)針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點(diǎn)B、A、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請(qǐng)你求出四邊形DBCE的面積.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(帶解析) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點(diǎn)B為中心,沿逆時(shí)針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點(diǎn)B、A、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=,請(qǐng)你求出四邊形DBCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市通州區(qū)九年級(jí)中考一模數(shù)學(xué)卷(解析版) 題型:解答題

已知如圖,在△ABC中,AB=AC,∠ABC=α,將△ABC以點(diǎn)B為中心,沿逆時(shí)針方向旋轉(zhuǎn)α度(0°<α<90°),得到△BDE,點(diǎn)B、A、E恰好在同一條直線上,連結(jié)CE.

(1)則四邊形DBCE是_______形(填寫:平行四邊形、矩形、菱形、正方形、梯形)

(2)若AB=AC=1,BC=,請(qǐng)你求出四邊形DBCE的面積.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案