以長(zhǎng)為2的線(xiàn)段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長(zhǎng)線(xiàn)上取點(diǎn)F,使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上.
(1)求AM,DM的長(zhǎng);
(2)求證:AM2=AD•DM;
(3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點(diǎn)嗎?

(1)解:在Rt△APD中,PA=AB=1,AD=2,
∴PD==,
∴AM=AF=PF-PA=PD-PA=-1,
DM=AD-AM=2-(-1)=3-;

(2)證明:∵AM2=(-1)2=6-2,AD•DM=2(3-)=6-2,
∴AM2=AD•DM;

(2)點(diǎn)M是AD的黃金分割點(diǎn).理由如下:
∵AM2=AD•DM,
=
∴點(diǎn)M是AD的黃金分割點(diǎn).
分析:(1)由勾股定理求PD,根據(jù)AM=AF=PF-PA=PD-PA,DM=AD-AM求解;
(2)由(1)計(jì)算的數(shù)據(jù)進(jìn)行證明;
(3)根據(jù)(2)的結(jié)論得:=,根據(jù)黃金分割點(diǎn)的概念,則點(diǎn)M是AD的黃金分割點(diǎn).
點(diǎn)評(píng):此題綜合考查了正方形的性質(zhì)、勾股定理和黃金分割的概念.先求得線(xiàn)段AM,DM的長(zhǎng),然后求得線(xiàn)段AM和AD,DM和AM之間的比,根據(jù)黃金分割的概念進(jìn)行判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,以長(zhǎng)為2的線(xiàn)段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長(zhǎng)線(xiàn)上取點(diǎn)F,
使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上,則AM的長(zhǎng)為( 。
A、
5
-1
B、
5
-1
2
C、3-
5
D、6-2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

以長(zhǎng)為2的線(xiàn)段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長(zhǎng)線(xiàn)上取點(diǎn)F,使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上.
(1)求AM,DM的長(zhǎng);
(2)求證:AM2=AD•DM;
(3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:044

以長(zhǎng)為2的線(xiàn)段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連結(jié)PD,在BA的延長(zhǎng)線(xiàn)上取點(diǎn)F,使.以AF為邊作正方形AMEF,點(diǎn)MAD上,如圖所示.

1)求AM、DM的長(zhǎng);

2)求證:

3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點(diǎn)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖所示,以長(zhǎng)為2的線(xiàn)段AB為邊作正方形ABCD,取AB的中點(diǎn)P,連接PD,在BA的延長(zhǎng)線(xiàn)上取點(diǎn)F,
使PF=PD,以AF為邊作正方形AMEF,點(diǎn)M在AD上,則AM的長(zhǎng)為


  1. A.
    數(shù)學(xué)公式-1
  2. B.
    數(shù)學(xué)公式
  3. C.
    3-數(shù)學(xué)公式
  4. D.
    6-2數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案