如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,.

(1)求的度數(shù);

(2)求證:AE是⊙O的切線。

 

【答案】

【解析】

試題分析:(1)∠ABC與∠D都是弧AC所對的圓周角,所以∠ABC=∠D=60°.

(2)根據(jù)角的關(guān)系證得∠BAE=90°,即BA⊥AE,根據(jù)切線的判定定理可得證.

試題解析:(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;

(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,

∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,

∴AE是⊙O的切線;

(3)如圖,連接OC,

∴OB=OC,∠ABC=60°,

∴△OBC是等邊三角形,∵OB=BC=4,∠BOC=60°,

∴∠AOC=120°,

考點(diǎn):1.圓的切線的判定.2.同弧所對的圓周角相等.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長.

查看答案和解析>>

同步練習(xí)冊答案