如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC=30 m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α .

(1) 用含α的式子表示h(不必指出α的取值范圍);

(2) 當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光 ?

 

【答案】

(1) h=30-30tana. (2) 第五層, 1小時后

【解析】(1)過點E作EF⊥AB于F,由題意,四邊形ACEF為矩形.

∴EF=AC=30,AF=CE=h, ∠BEF=α,

∴BF=3×10-h=30-h.

又 在Rt△BEF中,tan∠BEF=,

∴tanα=,即30 - h=30tanα.

∴h=30-30tan.

(2)當α=30°時,h=30-30tan30°=30-30×≈12.7,

∵ 12.7÷3≈4.2, ∴ B點的影子落在乙樓的第五層 .

當B點的影子落在C處時,甲樓的影子剛好不影響乙樓采光.

此時,由AB=AC=30,知△ABC是等腰直角三角形,

∴∠ACB=45°,

= 1(小時).

故經(jīng)過1小時后,甲樓的影子剛好不影響乙樓采光.

(1)利用直角三角形邊角關系得出h與α的關系;

(2)把α代入上題的關系中,解出h的高度,然后算出光線落到C點時的α的角度,從而得出需要時間。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC=30 m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此精英家教網(wǎng)時起幾小時后甲樓的影子剛好不影響乙樓采光?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC=30 m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α .

1.用含α的式子表示h(不必指出α的取值范圍);

2.當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光 ?(取1.73)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇淮安市漣水縣中考模擬(二)數(shù)學試卷(帶解析) 題型:解答題

如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α .

【小題1】用含α的式子表示h(不必指出α的取值范圍);
【小題2】當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光?(取1.73)

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東德州育英中學初中畢業(yè)生中考數(shù)學模擬試卷(二)(帶解析) 題型:解答題

如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3 m.假設某一時刻甲樓在乙樓側(cè)面的影長EC=h,太陽光線與水平線的夾角為α .

(1) 用含α的式子表示h(不必指出α的取值范圍);
(2) 當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光 ?

查看答案和解析>>

同步練習冊答案