(2007•武漢)你一定玩過蹺蹺板吧!如圖是小明和小剛玩蹺蹺板的示意圖,橫板繞它的中點(diǎn)O上下轉(zhuǎn)動(dòng),立柱OC與地面垂直.當(dāng)一方著地時(shí),另一方上升到最高點(diǎn).問:在上下轉(zhuǎn)動(dòng)橫板的過程中,兩人上升的最大高度AA′、BB′有何數(shù)量關(guān)系,為什么?
【答案】分析:O是AB、A′B′的中點(diǎn),得出兩組對(duì)邊相等,又因?yàn)閷?duì)頂角相等,通過SAS得出兩個(gè)全等三角形,得出AA′、BB′的關(guān)系.
解答:解:數(shù)量關(guān)系:AA′=BB′,
理由如下:
∵O是AB、A′B的中點(diǎn),
∴OA=OB′,OA′=OB,
在△A′OA與△BOB′中,
,
∴△A′OA≌△BOB′(SAS),
∴AA′=BB′.
點(diǎn)評(píng):本題考查最基本的三角形全等知識(shí)的應(yīng)用;用數(shù)學(xué)方法解決生活中有關(guān)的實(shí)際問題,把實(shí)際問題轉(zhuǎn)換成數(shù)學(xué)問題,用數(shù)學(xué)方法加以論證,是一種很重要的方法,注意掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•武漢)如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2007•武漢)康樂公司在A、B兩地分別有同型號(hào)的機(jī)器17臺(tái)和15臺(tái),現(xiàn)要運(yùn)往甲地18臺(tái),乙地14臺(tái).從A、B兩地運(yùn)往甲、乙兩地的費(fèi)用如下表:
甲地(元/臺(tái))乙地(元/臺(tái))
A地600500
B地400800
(1)如果從A地運(yùn)往甲地x臺(tái),求完成以上調(diào)運(yùn)所需總費(fèi)用y(元)與x(臺(tái))的函數(shù)關(guān)系式;
(2)若康樂公司請(qǐng)你設(shè)計(jì)一種最佳調(diào)運(yùn)方案,使總的費(fèi)用最少,該公司完成以上調(diào)運(yùn)方案至少需要多少費(fèi)用?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2007•武漢)你一定玩過蹺蹺板吧!如圖是小明和小剛玩蹺蹺板的示意圖,橫板繞它的中點(diǎn)O上下轉(zhuǎn)動(dòng),立柱OC與地面垂直.當(dāng)一方著地時(shí),另一方上升到最高點(diǎn).問:在上下轉(zhuǎn)動(dòng)橫板的過程中,兩人上升的最大高度AA′、BB′有何數(shù)量關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•武漢)你一定玩過蹺蹺板吧!如圖是小明和小剛玩蹺蹺板的示意圖,橫板繞它的中點(diǎn)O上下轉(zhuǎn)動(dòng),立柱OC與地面垂直.當(dāng)一方著地時(shí),另一方上升到最高點(diǎn).問:在上下轉(zhuǎn)動(dòng)橫板的過程中,兩人上升的最大高度AA′、BB′有何數(shù)量關(guān)系,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案