定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設(shè)此時小三角形的面積為SN
①若△DEF的面積為10000,當(dāng)n為何值時,2<Sn<3?(請用計算器進(jìn)行探索,要求至少寫出三次的嘗試估算過程)
②當(dāng)n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)

【答案】分析:(1)過直角頂點(diǎn)作斜邊的垂線即可得出兩個與原直角三角形相似的三角形.由于這兩個三角形都與原三角形共用一個銳角,又都有一個直角,因此有兩個對應(yīng)角相等,因此都與原三角形相似.
(2)由圖可知,每分割一次得到的圖形的小三角形的個數(shù)都是前面一個圖形中小三角形的個數(shù)的4倍,因此當(dāng)?shù)趎個圖時,如果設(shè)原三角形的面積為S,那么小三角形的面積應(yīng)該是Sn=,
①按所求的公式進(jìn)行計算,看n是多少時Sn的值在2和3之間.
②Sn==,Sn-1==,Sn+1==
由此可看出Sn2=Sn-1•Sn+1
解答:解:(1)如圖:割線CD就是所求的線段.
理由:∵∠B=∠B,∠CDB=∠ACB=90°,
∴△BCD∽△ACB.

(2)①△DEF經(jīng)N階分割所得的小三角形的個數(shù)為
∴Sn=.(7分)
當(dāng)n=5時,S5=≈9.77,
當(dāng)n=6時,S6=≈2.44,
當(dāng)n=7時,S7=≈0.61,
∴當(dāng)n=6時,2<S6<3.
②Sn2=Sn-1×Sn+1
點(diǎn)評:本題考查的是相似形的識別,關(guān)鍵要聯(lián)系實(shí)際,根據(jù)相似圖形的定義得出.要根據(jù)前面幾個簡單圖形得出一般化規(guī)律,然后用得出的規(guī)律來求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設(shè)此時小三角形的面積為SN
①若△DEF的面積為10000,當(dāng)n為何值時,2<Sn<3?(請用計算器進(jìn)行探索,要求至少寫出三次的嘗試估算過程)
②當(dāng)n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•慶元縣模擬)定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設(shè)此時小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時,3<Sn<4?
(請用計算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)
②當(dāng)n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省麗水市慶元縣中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連結(jié)三角形各邊中點(diǎn),則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結(jié)各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結(jié)它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設(shè)此時小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時,3<Sn<4?
(請用計算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)
②當(dāng)n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省麗水市慶元縣中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.

探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.

(2)一般地,“任意三角形都是自相似圖形”,只要順次連結(jié)三角形各邊中點(diǎn),則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結(jié)各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連結(jié)它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設(shè)此時小三角形的面積為Sn

①若△DEF的面積為1000,當(dāng)n為何值時,3<Sn<4?

(請用計算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)

②當(dāng)n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

定義:若某個圖形可分割為若干個都與他相似的圖形,則稱這個圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個與它自己相似的小直角三角形嗎?若能,請在圖甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個小三角形都是全等三角形(n為正整數(shù)),設(shè)此時小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時,3<Sn<4?
(請用計算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)
②當(dāng)n>1時,請寫出一個反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

同步練習(xí)冊答案