如圖,已知平面直角坐標(biāo)系中三個點(diǎn)A(-8,0)、B(2,0)、C數(shù)學(xué)公式O為坐標(biāo)原點(diǎn).以AB為直徑的⊙M與y軸的負(fù)半軸交于點(diǎn)D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點(diǎn)A作AE⊥CD,垂足為E,且AE與⊙M相交于點(diǎn)F,求一個一元二次方程,使它的兩個根分別是AE和AF.

(1)解:∵A(-8,0),B(2,0),
∴⊙M的圓心為(-3,0),且⊙M的半徑為5.
連接MD.
在Rt△OMD中,
OD==4,
∴D(0,-4).
設(shè)所求直線CD的解析式為y=kx+b,則由C(,0)、D(0,-4)兩點(diǎn),
,
解得
故所求直線CD的解析式為y=x-4.

(2)證明:在Rt△CDO中,CD2=OD2+OC2=42+(2=
在△CDM中,MC=3+,DM=5,
∴DM2+CD2=25+
,
∴MD2+CD2=MC2
∴△CDM是直角三角形,且
∠MDC=90°,CD經(jīng)過半徑MD的外端點(diǎn)D,
∴直線CD是⊙M的切線.

(3)解:由已知,AE⊥CD,由(2),MD⊥CD,
∴MD∥AE,
∴△CDM∽△CEA.
,即,解得AE=8.
連接BF.則∠AFB=90°.
又∠MDC=90°,∠CMD=∠CAE,
∴Rt△CDM∽Rt△BFA.
,即,解得AF=6.
故所求的一個一元二次方程是x2-14x+48=0.
分析:(1)已知A、B的坐標(biāo)就可以求出直徑AB的長,弦心距MB的長,根據(jù)垂徑定理就可以求出BD的長,即得到D的坐標(biāo).根據(jù)待定系數(shù)法就可以求出CD的解析式.
(2)連接MD,根據(jù)M,C,D的坐標(biāo)就可以得△CDM的三邊的長,根據(jù)勾股定理的逆定理證明三角形是直角三角形.
(3)易證△CDM∽△CEA,根據(jù)相似三角形的對應(yīng)邊的比相等,可以求出AE,再證明Rt△CDM∽Rt△BFA,就可以得到AF,則所求的一元二次方程就可以得到.
點(diǎn)評:本題主要考查了待定系數(shù)法求函數(shù)解析式,以及相似三角形的性質(zhì),相似三角形的對應(yīng)邊的比相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(四川巴中卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與y軸交于點(diǎn)A,

與x軸交于點(diǎn)B,與反比例函數(shù)的圖象分別交于點(diǎn)M,N,已知△AOB的面積為1,點(diǎn)M的縱坐

標(biāo)為2,

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)直接寫出時x的取值范圍。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點(diǎn)A,C的坐

標(biāo)分別為(6,0),(0,2).點(diǎn)D是線段BC上的一個動點(diǎn)(點(diǎn)D與點(diǎn)B,C不重合),過點(diǎn)D作直線=-交折線O-A-B于點(diǎn)E.

(1)在點(diǎn)D運(yùn)動的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點(diǎn)E在線段OA上時,矩形OABC關(guān)于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點(diǎn)D,M,O′A′分別交CB,OA于點(diǎn)N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

同步練習(xí)冊答案