【題目】輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí),若船速為26千米/時(shí),水速為2千米/時(shí),求A港和B港相距多少千米.設(shè)A港和B港相距x千米.根據(jù)題意,可列出的方程是( )
A.
B.
C.
D.

【答案】A
【解析】解:設(shè)A港和B港相距x千米,可得方程:

故選A.
輪船沿江從A港順流行駛到B港,則由B港返回A港就是逆水行駛,由于船速為26千米/時(shí),水速為2千米/時(shí),則其順流行駛的速度為26+2=28千米/時(shí),逆流行駛的速度為:26﹣2=24千米/時(shí).根據(jù)“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時(shí)”,得出等量關(guān)系:輪船從A港順流行駛到B港所用的時(shí)間=它從B港返回A港的時(shí)間﹣3小時(shí),據(jù)此列出方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校開展捐書活動,以下是5名同學(xué)捐書的冊數(shù):4,9,5x,3,已知這組數(shù)據(jù)的平均數(shù)是5,則這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是(

A. 33 B. 44 C. 34 D. 55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下面的結(jié)論: ①△ODC是等邊三角形;②BC=2AB;③∠AOE=135°;④SAOE=SCOE ,
其中正確結(jié)論有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):

(1)探究一:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的角之間的關(guān)系
已知:如圖1,在△ADC中,DP、CP分別平分∠ADC和∠ACD,
試探究∠P與∠A的數(shù)量關(guān)系,并說明理由.
(2)探究二:四邊形的兩個(gè)個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的角之間的關(guān)系
已知:如圖2,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,
試探究∠P與∠A+∠B的數(shù)量關(guān)系,并說明理由.
(3)探究三:六邊形的四個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的角之間的關(guān)系
已知:如圖3,在六邊形ABCDEF中,DP、CP分別平分∠EDC和∠BCD,
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(-2)2001+(-2)2002等于( )

A. -22001 B. -22002 C. 22001 D. -2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(a,5)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是(1,b+1),則點(diǎn)(a,b)在第象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10cm,BC=4cm,M,N兩點(diǎn)分別從A,B兩點(diǎn)以2cm/s和1cm/s的速度在矩形ABCD邊上沿逆時(shí)針方向運(yùn)動,其中有一點(diǎn)運(yùn)動到點(diǎn)D停止,當(dāng)運(yùn)動時(shí)間為秒時(shí),△MBN為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)2016年屋頂綠化面積為2000平方米,計(jì)劃2018年屋頂綠化面積要達(dá)到2880平方米,如果每年屋頂綠化面積的增長率相同,那么這個(gè)增長率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,如果把圖中任一條線段沿方格線平移1格稱為“1步”,那么要通過平移使圖中的3條線段首尾相接組成一個(gè)三角形,最少需要

A.4步
B.5步
C.6步
D.7步

查看答案和解析>>

同步練習(xí)冊答案