(2010•吳江市模擬)如圖,在⊙O中,AB是⊙O的直徑,∠D=40°,則∠AOC的度數(shù)為    度.
【答案】分析:首先根據(jù)圓周角定理:同弧或等弧所對的圓周角等于它所對的圓心角的一半,求得∠BOC的度數(shù)再根據(jù)鄰補角定義即可求出.
解答:解:∵∠D=40°,
∴∠BOC=2∠D=80°,
∴∠AOC=180°-∠BOC=100°.
點評:本題主要考查了圓周角定理的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年江蘇省蘇州市吳江市中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•吳江市模擬)如圖,矩形A′B′C′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點逆時針旋轉(zhuǎn)得到的,O′點在x軸的正半軸上,B點的坐標(biāo)為(1,3).O′C′與AB交于D點.
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點且圖象頂點M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)求D點的坐標(biāo);
(3)若將直線OC繞點O旋轉(zhuǎn)α度(0<α<90)后與拋物線的另一個交點為點P,則以O(shè)、O′、B、P為頂點的四邊形能否是平行四邊形?若能,求出tanα的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省泰州市泰興市濟川實驗初中階段測試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•吳江市模擬)如圖,矩形A′B′C′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點逆時針旋轉(zhuǎn)得到的,O′點在x軸的正半軸上,B點的坐標(biāo)為(1,3).O′C′與AB交于D點.
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點且圖象頂點M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)求D點的坐標(biāo);
(3)若將直線OC繞點O旋轉(zhuǎn)α度(0<α<90)后與拋物線的另一個交點為點P,則以O(shè)、O′、B、P為頂點的四邊形能否是平行四邊形?若能,求出tanα的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(8)(解析版) 題型:解答題

(2010•吳江市模擬)如圖,矩形A′B′C′O′是矩形OABC(邊OA在x軸正半軸上,邊OC在y軸正半軸上)繞B點逆時針旋轉(zhuǎn)得到的,O′點在x軸的正半軸上,B點的坐標(biāo)為(1,3).O′C′與AB交于D點.
(1)如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過O,O′兩點且圖象頂點M的縱坐標(biāo)為-1,求這個二次函數(shù)的解析式;
(2)求D點的坐標(biāo);
(3)若將直線OC繞點O旋轉(zhuǎn)α度(0<α<90)后與拋物線的另一個交點為點P,則以O(shè)、O′、B、P為頂點的四邊形能否是平行四邊形?若能,求出tanα的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年重慶市開縣西街中學(xué)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•吳江市模擬)如圖,在Rt△ABC中,∠ACB=90°,AC<BC,D為AB的中點,DE交AC于點E,DF交BC于點F,且DE⊥DF,過A作AG∥BC交FD的延長線于點G.
(1)求證:AG=BF;
(2)若AE=9,BF=18,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省揚州市中考數(shù)學(xué)模擬卷(解析版) 題型:填空題

(2010•吳江市模擬)如圖,直線AB∥CD,則∠C=    度.

查看答案和解析>>

同步練習(xí)冊答案