已知:∠B=∠C,AD是△ABC的角平分線,DE⊥AB于E,DF⊥AC于F.

求證:BE=CF.

 

先證△ABC是等腰三角形,再證BD=CD,DE=DF,進而得Rt△BDE≌Rt△CDF,

∴BE=CF

解析:略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知直線y=kx-3與x軸交于點A(4,0),與y軸交于點C,拋物線經(jīng)過點A和點C,動點P在x軸上以每秒1個長度單位的速度由拋物線與x軸的另一個交點B向點A運動,點Q由點C沿線段CA向點A運動且速度是點P運動速度的2倍。
【小題1】(1)求此拋物線的解析式和直線的解析式;   
【小題2】(2)如果點P和點Q同時出發(fā),運動時間為t(秒),試問當t為何值時,△PQA是直角三角形;
【小題3】(3)在直線CA上方的拋物線上是否存在一點D,使得△ACD的面積最大,若存在,求出點D坐標;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知拋物線y=ax2+bx+3的圖象與x軸交于A、B兩點,與y軸交于點C,且點C、D是拋物線上的一對對稱點

【小題1】求拋物線的解析式
【小題2】求點D的坐標,并在圖中畫出直線BD
【小題3】求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當x滿足什么條件時,上述二次函數(shù)的值大于該一次函數(shù)的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一次函數(shù)y1=kx+b與反比例函數(shù)y2=在同一直角坐標系中的圖象如圖所示,則當y1<y2時,x的取值范圍是【   】
A.x<-1或0<x<3B.-1<x<0或x>3
C.-1<x<0D.x>3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,如圖,∠1=∠2,且∠1=∠3,閱讀并補充下列推理過程,在括號中填寫理由:
解:∵∠1=∠2(           )
                  (                           )             
又∵∠1=∠3(已知)
∴∠2=∠3            
                  (                           )
∴∠1+∠4=180°        (                           )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題10分) 已知一次函數(shù)y的圖象與x軸交于點A.與軸交于點;二次函數(shù)圖象與一次函數(shù)y的圖象交于、兩點,與軸交于、兩點且的坐標為

(1)求二次函數(shù)的解析式;
(2)在軸上是否存在點P,使得△是直角三角形?若存在,求出所有的點,若不存在,請說明理由。
 

查看答案和解析>>

同步練習冊答案