【題目】如圖,AB∥CD,點E,F分別在AB,CD上,連接EF,∠AEF,∠CFE的平分線交于點G,∠BEF,∠DFE的平分線交于點H.易證∠EHF=∠EGF=∠GEH=90°,從而可知四邊形EGFH是矩形.

小明繼續(xù)進行了探索,過G作MN∥EF,分別交AB,CD于點M,N,過H作PQ∥EF,分別交AB,CD于點P,Q,得到四邊形MNQP,此時,他猜想四邊形MNQP是菱形,請在下列框中補全他的證明思路.

由AB∥CD,MN∥EF,PQ∥EF,易證四邊形MNQP是平行四邊形.要證平行四邊形MNQP是菱形,只要證MN=NQ.由已知條件_____,MN∥EF,可得NG=NF,故只要證GM=FQ,即證△MGE≌△QFH.易證_____,_____,故只要證∠MGE=∠QFH,易證∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得證.

【答案】FG平分∠CFE GE=FH ∠GME=∠FQH ∠GEF=∠EFH

【解析】

利用菱形的判定方法首先得出要證MNQP是菱形,只要證MN=NQ,再證∠MGE=∠QFH得出即可

ABCD,MNEF,PQEF,易證四邊形MNQP是平行四邊形,

要證MNQP是菱形,只要證MN=NQ,由已知條件:FG平分∠CFE,MNEF,

故只要證GM=FQ,即證MGEQFH,易證GE=FH、GME=FQH.

故只要證∠MGE=QFH,易證∠MGE=GEF,QFH=EFH,GEF=EFH,即可得證;

故答案為:FG平分∠CFE,GE=FH、GME=FQH,GEF=EFH.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點是斜邊的中點.點從點出發(fā)以的速度向點運動,點同時從點出發(fā)以一定的速度沿射線方向運動,規(guī)定當點到終點時停止運動.設運動的時間為秒,連接

1)填空:______;

2)當且點運動的速度也是時,求證:;

3)若動點的速度沿射線方向運動,在點、點運動過程中,如果存在某個時間,使得的面積是面積的兩倍,請你求出時間的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條平坦的公路旁邊建造了A,B兩棟住房這兩棟住房與小明所就讀的西湖中學在同一條直線上,如圖,已知A棟住房有6,每層高4 m;B棟住房共3每層也是4 m,A,B兩棟樓相距30 m,小明家住在A棟樓的第5,放學后小明從學校向這兩棟樓走來.

:(1)小明離B棟樓多遠時,他才能完全看不到他家的那層樓房?

(2)小明要想完全看到他家的那層樓房,他離B棟樓的距離要滿足什么條件(小明的身高不計)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律所組成的,其中第①個圖形中一共有2個空心菱形,第②個圖形中一共有5個空心菱形,第③個圖形中一共有11個空心菱形,,按此規(guī)律排列下去,第⑨個圖形中空心菱形的個數(shù)為(

A.68B.76C.86D.104

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠B=30°AD是角平分線,DE⊥ABE,AD、CE相交于點H,則圖中的等腰三角形有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD的對角線相交于點O,∠COE45°,過點CCEBD于點E,

1)如圖1,若CB1,求CED的面積;

2)如圖2,過點OOFDB于點OOFOD,連接FC,點GFC中點,連接GE,求證:DC2GE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,頂點Cy軸的負半軸上,點A(1,),點B在第一象限,經過點A的反比例函數(shù)y=(x>0)的圖象恰好經過頂點B,則△ABC的邊長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先仔細閱讀材料,再嘗試解決問題:我們在求代數(shù)式的最大或最小值時,通過利用公式對式子作如下變形:

因為,

所以,

因此有最小值2,

所以,當時,,的最小值為2.

同理,可以求出的最大值為7.

通過上面閱讀,解決下列問題:

1)填空:代數(shù)式的最小值為______________;代數(shù)式的最大值為______________;

2)求代數(shù)式的最大或最小值,并寫出對應的的取值;

3)求代數(shù)式的最大或最小值,并寫出對應的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在直角坐標系中.

1)若把△ABC向上平移2個單位,再向左平移1個單位得到△A1B1C1,畫出△A1B1C1,并寫出點A1,B1C1的坐標;

2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案