如圖,在△ABC中,BD⊥AC于D點(diǎn),F(xiàn)G⊥AC于G點(diǎn),∠CBE+∠BED=180°.
(1)求證:FG∥BD;
(2)求證:∠CFG=∠BDE.
分析:(1)根據(jù)垂直得出同位角相等,根據(jù)平行線判定推出即可.
(2)根據(jù)平行線的判定推出DE∥BC,推出∠BDE=∠CBD,根據(jù)平行線性質(zhì)求出∠CFG=∠CBD即可.
解答:證明:(1)∵BD⊥AC,F(xiàn)G⊥AC,
∴∠FGC=∠BDG=90°,
∴FG∥BD.

(2)∵∠CBE+∠BED=180°,
∴DE∥BC,
∴∠BDE=∠CBD,
∵FG∥BD,
∴∠CFG=∠CBD,
∴∠CFG=∠BDE.
點(diǎn)評(píng):本題考查了平行線的性質(zhì)和判定的應(yīng)用,注意:①兩直線平行,同位角相等,②兩直線平行,內(nèi)錯(cuò)角相等,③兩直線平行,同旁內(nèi)角互補(bǔ),反之亦然.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案