+(200÷30)=146
所以,符合條件的數(shù)共有200-146=54(個(gè))
點(diǎn)評(píng):分析200個(gè)數(shù)分為兩類,即滿足題設(shè)條件的和不滿足題設(shè)條件的兩大類,而不滿足條件的這一類標(biāo)準(zhǔn)明確而簡(jiǎn)單,可考慮用扣除法。
題型7:集合綜合題
例11.(1999上海,17)設(shè)集合A={x||x-a|<2},B={x|<1},若AB,求實(shí)數(shù)a的取值范圍。
解:由|x-a|<2,得a-2<x<a+2,所以A={x|a-2<x<a+2}。
由<1,得<0,即-2<x<3,所以B={x|-2<x<3}。
因?yàn)锳B,所以,于是0≤a≤1。
點(diǎn)評(píng):這是一道研究集合的包含關(guān)系與解不等式相結(jié)合的綜合性題目。主要考查集合的概念及運(yùn)算,解絕對(duì)值不等式、分式不等式和不等式組的基本方法。在解題過程中要注意利用不等式的解集在數(shù)軸上的表示方法.體現(xiàn)了數(shù)形結(jié)合的思想方法。
例12.已知{an}是等差數(shù)列,d為公差且不為0,a1和d均為實(shí)數(shù),它的前n項(xiàng)和記作Sn,設(shè)集合A={(an,)|n∈N*},B={(x,y)| x2-y2=1,x,y∈R}。
試問下列結(jié)論是否正確,如果正確,請(qǐng)給予證明;如果不正確,請(qǐng)舉例說明:
(1)若以集合A中的元素作為點(diǎn)的坐標(biāo),則這些點(diǎn)都在同一條直線上;
(2)A∩B至多有一個(gè)元素;
(3)當(dāng)a1≠0時(shí),一定有A∩B≠。
解:(1)正確;在等差數(shù)列{an}中,Sn=,則(a1+an),這表明點(diǎn)(an,)的坐標(biāo)適合方程y(x+a1),于是點(diǎn)(an,
)均在直線y=x+a1上。
(2)正確;設(shè)(x,y)∈A∩B,則(x,y)中的坐標(biāo)x,y應(yīng)是方程組的解,由方程組消去y得:2a1x+a12=-4(*),
當(dāng)a1=0時(shí),方程(*)無解,此時(shí)A∩B=;
當(dāng)a1≠0時(shí),方程(*)只有一個(gè)解x=,此時(shí),方程組也只有一解,故上述方程組至多有一解。
∴A∩B至多有一個(gè)元素。
(3)不正確;取a1=1,d=1,對(duì)一切的x∈N*,有an=a1+(n-1)d=n>0, >0,這時(shí)集合A中的元素作為點(diǎn)的坐標(biāo),其橫、縱坐標(biāo)均為正,另外,由于a1=1≠0 如果A∩B≠,那么據(jù)(2)的結(jié)論,A∩B中至多有一個(gè)元素(x0,y0),而x0=<0,y0=<0,這樣的(x0,y0)A,產(chǎn)生矛盾,故a1=1,d=1時(shí)A∩B=,所以a1≠0時(shí),一定有A∩B≠是不正確的。
點(diǎn)評(píng):該題融合了集合、數(shù)列、直線方程的知識(shí),屬于知識(shí)交匯題。
變式題:解答下述問題:
(Ⅰ)設(shè)集合,,求實(shí)數(shù)m的取值范圍.
分析:關(guān)鍵是準(zhǔn)確理解 的具體意義,首先要從數(shù)學(xué)意義上解釋 的意義,然后才能提出解決問題的具體方法。
解:
的取值范圍是UM={m|m<-2}.
(解法三)設(shè)這是開口向上的拋物線,,則二次函數(shù)性質(zhì)知命題又等價(jià)于
注意,在解法三中,f(x)的對(duì)稱軸的位置起了關(guān)鍵作用,否則解答沒有這么簡(jiǎn)單。
(Ⅱ)已知兩個(gè)正整數(shù)集合A={a1,a2,a3,a4},
、B.
分析:命題中的集合是列舉法給出的,只需要根據(jù)“交、并”的意義及元素的基本性質(zhì)解決,注意“正整數(shù)”這個(gè)條件的運(yùn)用,
(Ⅲ)
分析:正確理解
要使,
由
當(dāng)k=0時(shí),方程有解,不合題意;
當(dāng)①
又由
由②,
由①、②得
∵b為自然數(shù),∴b=2,代入①、②得k=1
點(diǎn)評(píng):這是一組關(guān)于集合的“交、并”的常規(guī)問題,解決這些問題的關(guān)鍵是準(zhǔn)確理解問題條件的具體的數(shù)學(xué)內(nèi)容,才能由此尋求解決的方法。
題型6:課標(biāo)創(chuàng)新題
例13.七名學(xué)生排成一排,甲不站在最左端和最右端的兩個(gè)位置之一,乙、丙都不能站在正中間的位置,則有多少不同的排法?
解:設(shè)集合A={甲站在最左端的位置},
B={甲站在最右端的位置},
C={乙站在正中間的位置},
D={丙站在正中間的位置},
則集合A、B、C、D的關(guān)系如圖所示,
∴不同的排法有種.
點(diǎn)評(píng):這是一道排列應(yīng)用問題,如果直接分類、分步解答需要一定的基本功,容易錯(cuò),若考慮運(yùn)用集合思想解答,則比較容易理解。上面的例子說明了集合思想的一些應(yīng)用,在今后的學(xué)習(xí)中應(yīng)注意總結(jié)集合應(yīng)用的經(jīng)驗(yàn)。
例14.A是由定義在上且滿足如下條件的函數(shù)組成的集合:①對(duì)任意,都有 ; ②存在常數(shù),使得對(duì)任意的,都有
(1)設(shè),證明:
(2)設(shè),如果存在,使得,那么這樣的是唯一的;
(3)設(shè),任取,令證明:給定正整數(shù)k,對(duì)任意的正整數(shù)p,成立不等式。
解:
對(duì)任意,,,,所以
對(duì)任意的,
,
,
所以0<,
令=,
,
所以
反證法:設(shè)存在兩個(gè)使得,。
則由,
得,所以,矛盾,故結(jié)論成立。
,
所以
+…
。
點(diǎn)評(píng):函數(shù)的概念是在集合理論上發(fā)展起來的,而此題又將函數(shù)的性質(zhì)融合在集合的關(guān)系當(dāng)中,題目比較新穎。