已知拋物線的頂點是(-1,-2),且過點(1,10).求此拋物線對應的二次函數(shù)關系式
y=3x2+6x+1
y=3x2+6x+1
分析:由于已知拋物線的頂點坐標,則可設拋物線的解析式為y=a(x+1)2-2,然后把(1,10)代入求出a即可.
解答:解:設拋物線的解析式為y=a(x+1)2-2,
把(1,10)代入得4a-2=10,解得a=3,
所以拋物線的解析式為y=3(x+1)2-2=3x2+6x+1.
故答案為y=3x2+6x+1.
點評:本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

根據(jù)下列條件,分別求出對應的二次函數(shù)關系式.
(1)已知拋物線的頂點是(-1,-2),且過點(1,10);
(2)已知拋物線過三點:(0,-2),(1,0),(2,3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、已知拋物線的頂點是M(1,16),且與x軸交于A,B兩點(A在B的左邊),若AB=8,求該拋物線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線的頂點是C(0,a)(a>0,a為常數(shù)),并經(jīng)過點(2a,2a),點D(0,2a)為一定點.
(1)求含有常數(shù)a的拋物線的解析式;
(2)設點P是拋物線上任意一點,過P作PH丄x軸.垂足是H,求證:PD=PH;
(3)設過原點O的直線l與拋物線在笫一象限相交于A、B兩點,若DA=2DB.且S△ABD=4
2
.求a的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

根據(jù)下列條件,求出二次函數(shù)的關系式.已知拋物線的頂點是(-1,-2),且過點(1,10).

查看答案和解析>>

同步練習冊答案