如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:

(1)畫線段AD∥BC且使AD =BC,連接CD;
(2)線段AC的長為      ,CD的長為     ,AD的長為       ;
(3)△ACD為     三角形,四邊形ABCD的面積為     ;
(4)若E為BC中點(diǎn),則tan∠CAE的值是    

(1)如圖;

(2),5;     
(3)直角,10;       
(4).    

解析試題分析:(1)根據(jù)題意,畫出AD∥BC且使AD=BC,連接CD;
(2)在網(wǎng)格中利用直角三角形,先求AC2,CD2,AD2的值,再求出AC的長,CD的長,AD的長;
(3)利用勾股定理的逆定理判斷直角三角形,再求出四邊形ABCD的面積;
(4)把問題轉(zhuǎn)化到Rt△ACF中,利用三角函數(shù)的定義解題.
考點(diǎn):勾股定理;勾股定理的逆定理;作圖—基本作圖;銳角三角函數(shù)的定義.
點(diǎn)評(píng):本題解題關(guān)鍵是運(yùn)用網(wǎng)格表示線段的長度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,在邊長為1的小正方形組成的10×10網(wǎng)格中(我們把組成網(wǎng)格的小正方形的頂點(diǎn)稱為格點(diǎn)),四邊形ABCD在直線l的左側(cè),其四個(gè)頂點(diǎn)A、B、C、D分別在網(wǎng)格的格點(diǎn)上.
(1)請(qǐng)你在所給的網(wǎng)格中畫出四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關(guān)于直線l對(duì)稱,其中點(diǎn)A′、B′、C′、D′分別是點(diǎn)A、B、C、D的對(duì)稱點(diǎn);
(2)在(1)的條件下,結(jié)合你所畫的圖形,直接寫出線段A′B′的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•潮陽區(qū)模擬)如圖,在邊長為1的小正方形組成的網(wǎng)格中,兩個(gè)直角三角形頂點(diǎn)均在格點(diǎn)上,以圖中的點(diǎn)O為位似中心在網(wǎng)格圖中作位似變換,分別將兩個(gè)直角三角形縮小為原來的一半,(要求縮小的圖形與原圖形在點(diǎn)O兩側(cè))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•泰寧縣質(zhì)檢)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)用簽字筆畫AD∥BC(D為格點(diǎn)),連接CD.
(2)線段AB的長為
5
5
,△ABC的面積為
6
6

(3)若E為BC中點(diǎn),則tan∠CAE的值是
1
2
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•菏澤)如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1,P2,P3,P4,P5是△DEF邊上的5個(gè)格點(diǎn),請(qǐng)按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說明理由;
(3)畫一個(gè)三角形,使它的三個(gè)頂點(diǎn)為P1,P2,P3,P4,P5中的3個(gè)格點(diǎn)并且與△ABC相似(要求:不寫作法與證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長為1的小正方形組成的網(wǎng)格中,△AOB的三個(gè)頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別為(3,2)、(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1
(1)在網(wǎng)格中畫出△A1OB1,并標(biāo)上字母;
(2)點(diǎn)A關(guān)于O點(diǎn)中心對(duì)稱的點(diǎn)的坐標(biāo)為
(-3,-2)
(-3,-2)
;
(3)點(diǎn)A1的坐標(biāo)為
(-2,3)
(-2,3)

(4)在旋轉(zhuǎn)過程中,點(diǎn)B經(jīng)過的路徑為弧BB1,那么弧BB1的長為
10
2
π
10
2
π

查看答案和解析>>

同步練習(xí)冊(cè)答案