已知等腰Rt△ABC(如圖),試取斜邊AB上的一點(diǎn)為圓心畫圖,使點(diǎn)A,B,C分別在所畫的圓內(nèi)、圓外和圓上.

【答案】分析:利用等腰三角形的性質(zhì),以及點(diǎn)與圓的位置關(guān)系判定方法,可以依次確定A,B,C與圓的位置關(guān)系.
解答:解:作中線CD,在線段OA上取一點(diǎn)O,以O(shè)為圓心,OA為半徑畫圓即可.
理由:∵△ABC為等腰直角三角形,
∴DA=DB=DC,
Rt△COD中,OC為斜邊,則OC>CD,OA<AD=CD,故A在圓內(nèi),
OB>BD=CD,故B在圓外,
顯然C在圓上.
點(diǎn)評:此題主要考查了等腰三角形的性質(zhì),點(diǎn)與圓的位置關(guān)系的判定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC,AC=BC=2,D為射線CB上一動點(diǎn),經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交直線AC于點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)D在斜邊AB上時,求⊙O的半徑;
(2)如圖2,點(diǎn)D在線段BC上,使四邊形AODE為菱形時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)如圖,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,點(diǎn)P是線段AB上的點(diǎn),點(diǎn)Q是線段BC延長線上的點(diǎn),且AP=CQ,PQ與直線AC相交于點(diǎn)D.作PE⊥AC于點(diǎn)E,則線段DE的長度( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•拱墅區(qū)二模)如圖,已知等腰Rt△ABC中,∠ACB=90°,點(diǎn)D為等腰Rt△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長線上的一點(diǎn),且CE=CA.
(1)求證:DE平分∠BDC;
(2)連接BE,設(shè)DC=a,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知等腰Rt△ABC和等腰Rt△EDF,其中D、G分別為斜邊AB、EF的中點(diǎn),連CE,又M為BC中點(diǎn),N為CE的中點(diǎn),連MN、MG
(1)如圖1,當(dāng)DE恰好過M點(diǎn)時,求證:∠NMG=45°,且MG=
2
MN;
(2)如圖2,當(dāng)?shù)妊黂t△EDF繞D點(diǎn)旋轉(zhuǎn)一定的度數(shù)時,第(1)問中的結(jié)論是否仍成立,并證明;
(3)如圖3,連BF,已知P為BF的中點(diǎn),連CF與PN,若CF=6,直接寫出
PN
CF
=
2
2
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D為△ABC的一個外角∠ABF的平分線上一點(diǎn),且∠ADC=45°,CD交AB于E,
(1)求證:AD=CD;
(2)求AE的長.

查看答案和解析>>

同步練習(xí)冊答案