如圖1,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB:y=
1
2
x+1
分別交x、y軸于點(diǎn)A、B,過點(diǎn)A畫AC⊥AB,且AC=AB,連接BC得△ABC,將△ABC沿x軸正方向平移后得△A′B′C′.
(1)點(diǎn)B的坐標(biāo)是
(0,1)
(0,1)
,點(diǎn)C的坐標(biāo)是
(-3,2)
(-3,2)

(2)平移后當(dāng)頂點(diǎn)C′正好落在直線AB上,求平移的距離和點(diǎn)B′的坐標(biāo);
(3)如圖2,將△A′B′C′從(2)的位置開始繼續(xù)向右平移,連接OB′、OC′,問當(dāng)點(diǎn)B′在何位置時(shí),△OB′C′的面積是△ABC面積的
12
5
倍?請(qǐng)你求出點(diǎn)B′的坐標(biāo).
分析:(1)根據(jù)直線AB解析式可得出點(diǎn)B的坐標(biāo),過點(diǎn)C作CE⊥x軸于點(diǎn)E,求出AE、CE即可得出點(diǎn)C的坐標(biāo);
(2)平移后點(diǎn)C的縱坐標(biāo)不變,將點(diǎn)C縱坐標(biāo)代入,可求出橫坐標(biāo),然后可確定平移距離,繼而得出點(diǎn)B'的坐標(biāo).
(3)根據(jù)(1)所求的坐標(biāo),可設(shè)點(diǎn)B'的坐標(biāo)為(m,1),點(diǎn)C'坐標(biāo)(m-3,2),根據(jù)S△OB'C'=S梯形BMNC'+S△OC'N-S△OB'M=
12
5
×S△ABC,可得出關(guān)于m的方程,解出即可得出答案.
解答:解:(1)∵直線AB解析式為:y=
1
2
x+1

∴點(diǎn)B的坐標(biāo)為(0,1),點(diǎn)A的坐標(biāo)為(-2,0),
過點(diǎn)C作CE⊥x軸于點(diǎn)E,
則AC=AB=
OB2+OA2
=
5

∵∠ACE=∠BAO(同角的余角相等,都是∠CAE的余角),
∴sin∠ACE=sin∠BAO=
BO
AB
=
5
5
,
∴AE=1,CE=2,
∴點(diǎn)C的坐標(biāo)為(-3,2).
(2)∵點(diǎn)C在直線y=
1
2
x+1上,點(diǎn)C'的縱坐標(biāo)為2,
1
2
x+1=2,
解得:x=2,即可得點(diǎn)C'的坐標(biāo)為(2,2),
則平移距離=2-(-3)=5,點(diǎn)B'的坐標(biāo)為(5,1).
(3)過點(diǎn)B'作B'M⊥x軸于點(diǎn)M,過點(diǎn)C'作C'N⊥x軸于點(diǎn)N,
S△ABC=
1
2
AC×AB=
5
2
,
設(shè)點(diǎn)B'的坐標(biāo)為(m,1),點(diǎn)C'坐標(biāo)(m-3,2),
S△OB'C'=S梯形B′MNC'+S△OC'N-S△OB'M=
1
2
×(1+2)×3+
1
2
(m-3)×2-
1
2
m×1=
1
2
m+
3
2

∵△OB′C′的面積是△ABC面積的
12
5

1
2
m+
3
2
=
12
5
×
5
2
,
解得:m=9,
故可得點(diǎn)B'的坐標(biāo)為(9,1).
點(diǎn)評(píng):本題考查了一次函數(shù)綜合題,注意學(xué)會(huì)點(diǎn)的坐標(biāo)與線段長(zhǎng)度之間的轉(zhuǎn)化,要求能根據(jù)直線解析式確定點(diǎn)的坐標(biāo),在第三問的求解中,關(guān)鍵是利用差值法表示出△OB'C'的面積,此題難度較大,注意一步一步的分析.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,直線AB分別與x軸、y軸交于點(diǎn)B、A,與精英家教網(wǎng)反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,tan∠ABO=
12
,OB=4,OE=2.
(1)求該反比例函數(shù),直線AB的解析式.
(2)求D點(diǎn)坐標(biāo),及△CED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,拋物線的頂點(diǎn)P到x軸的距離是4,與x軸交于0、M兩點(diǎn),O精英家教網(wǎng)M=4,矩形ABCD的邊BC在線段OM上,點(diǎn)A、D在拋物線上.
(1)請(qǐng)寫出P、M兩點(diǎn)坐標(biāo),并求這條拋物線的解析式;
(2)當(dāng)矩形ABCD的周長(zhǎng)為最大值時(shí),將矩形繞它的中心順時(shí)針方向旋轉(zhuǎn)90°,求點(diǎn)D的坐標(biāo);
(3)連接OP,請(qǐng)判斷在拋物線上是否存在點(diǎn)Q(除點(diǎn)M外)使△OPQ是等腰三角形?若存在,寫出點(diǎn)Q到y(tǒng)軸的距離;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(8,0),D點(diǎn)坐標(biāo)為(0,6),則AC長(zhǎng)為
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,點(diǎn)A(2,2),試在x軸上找點(diǎn)P,使△AOP是等腰三角形,那么這樣的三角形有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案