如圖,AD是△ABC的角平分線,DE⊥AB,DF⊥AC,垂足分別是點E,F(xiàn),連接EF,交AD于點G,求證:AD⊥EF.
分析:根據(jù)角平分線性質(zhì)求出DE=DF,根據(jù)證△AED和△AFD全等,推出AE=AF,根據(jù)等于三角形的性質(zhì)求出即可.
解答:解:AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF,
在Rt△AED和Rt△AFD中,
AD=AD
DE=DF
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
又∵AD平分∠BAC,
∴AD⊥EF.
點評:本題考查了角平分線性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定等知識點的應(yīng)用,關(guān)鍵是求出AE=AF,題目較好,綜合性比較強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為(  )

查看答案和解析>>

同步練習(xí)冊答案