【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A、C的坐標分別為(﹣4,5),(﹣1,3).

(1)請在如圖所示的網格平面內作出平面直角坐標系;

(2)請作出ABC關于y軸對稱的A′B′C′;

(3)點B′的坐標為   

(4)ABC的面積為   

【答案】(1)作圖見解析;(2)作圖見解析;(3)B’(2,1);(4)4.

【解析】

試題

(1)由點A的坐標為(-4,5)可知:坐標系的軸與點A下方5個單位長度處水平方向的網格線重合,坐標系的軸與點A右邊4個單位長度處豎直方向的網格線重合,由此即可畫出相應的平面直角坐標系;

(2)先分別作出點ABC關于軸的對稱點A′、B′、C′,再順次連接這三點即可得到所求圖形;

(3)由(2)中所作圖形可得B′的坐標;

(4)如圖,由SABC=S矩形ADEF-SADB-SBCE-SAFC可計算出△ABC的面積;

試題解析

(1)由題意所建坐標系如下圖:

(2)△ABC關于軸的對稱△AB′C′如下圖所示:

(3)如圖,點B′的坐標為:(2,1);

(4)如圖,SABC=S矩形ADEF-SADB-SBCE-SAFC=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形OABC是菱形,點C在x軸上,AB交y軸于點H,AC交y軸于點M.已知點A(-3,4).

(1)求AO的長;

(2)求直線AC的解析式和點M的坐標;

(3)如圖2,點P從點A出發(fā),以每秒2個單位的速度沿折線A-B-C運動,到達點C終止.設點P的運動時間為t秒,△PMB的面積為S.

①求S與t的函數(shù)關系式;

②求S的最大值.

 

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:MON=30o,點A1、A2、A3 在射線ON上,點B1、B2、B3…..在射線OM上,A1B1A2. A2B2A3A3B3A4……均為等邊三角形,若OA1=l,則A6B6A7 的邊長為【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AC的垂直平分線分別交ABAC于點D、E.

1)若∠A=40°,求∠DCB的度數(shù);

2)若AE=5,DCB的周長為16,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點.

(1)如圖1,當點P與點Q重合時,AE與BF的位置關系是   ,QE與QF的數(shù)量關系式   ;

(2)如圖2,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關系,并給予證明;

(3)如圖3,當點P在線段BA(或AB)的延長線上時,此時(2)中的結論是否成立?請畫出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地,兩車同時出發(fā).不久,第二列快車也從甲地發(fā)往乙地,速度與第一列快車相同.在第一列快車與慢車相遇30分后,第二列快車與慢車相遇.設慢車行駛的時間為x(單位:時),慢車與第一、第二列快車之間的距離y(單位:千米)與x(單位:時)之間的函數(shù)關系如圖1、圖2,
根據圖象信息解答下列問題:
(1)甲、乙兩地之間的距離為千米.
(2)求圖1中線段CD所表示的y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍.
(3)請直接在圖2中的( )內填上正確的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點A、B(點A位于點B的左側),與y軸交于點C,CD∥x軸交拋物線于點D,M為拋物線的頂點.

(1)求點A、B、C的坐標;
(2)設動點N(﹣2,n),求使MN+BN的值最小時n的值;
(3)P是拋物線上一點,請你探究:是否存在點P,使以P、A、B為頂點的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=kx+b圖象如圖所示,則關于x的不等式kx+b<0的解集為( )

A.x<-5
B.x>-5
C.x≥-5
D.x≤-5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點O,BAC=50°,C=70°,求∠DAC及∠BOA的度數(shù).

查看答案和解析>>

同步練習冊答案