7、如圖,已知直線AB∥CD,當點E直線AB與CD之間時,有∠BED=∠ABE+∠CDE成立;而當點E在直線AB與CD之外時,下列關系式成立的是( 。
分析:當E在AB的上方時,過E作EF∥AB,因為CD∥AB,所以EF∥CD,于是得到∠FED=∠3,∠1=∠2,故∠BED=∠FED-∠FEB=
∠CDE-∠ABE;若E在DC的下方時同理可得∠BED=∠ABE-∠CDE,然后即可得到題目的結果.
解答:解:如圖,當E在AB的上方時,
過E作EF∥AB,
∵CD∥AB,
∴EF∥CD,
∴∠FED=∠3,∠1=∠2,
故∠BED=∠FED-∠FEB=∠CDE-∠ABE;
當E在DC的下方時,
同理可得∠BED=∠ABE-∠CDE.
故選C.
點評:此題主要考查了平行線,根據(jù)平行線的性質即可求出結論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB,CD相交于點O,OA平分∠EOC,∠EOC=70°,則∠BOD的度數(shù)等于
35
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,已知直線AB、CD相交于點O,OE平分∠BOC,如果∠BOE=50°,那么∠AOC=
80
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直線AB和CD相交于O點,∠DOE是直角,OF平分∠AOE,∠BOD=22°,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB∥CD,∠A=∠C=100°,E、F在CD上,且滿足∠DBF=∠ABD,BE平分∠CBF.
(1)直線AD與BC有何位置關系?請說明理由.
(2)求∠DBE的度數(shù).
(3)若平行移動AD,在平行移動AD的過程中,是否存在某種情況,使∠BEC=∠ADB?若存在,求出其度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB∥CD,EM⊥FM,∠MFD=25°,求∠MEB的度數(shù).

查看答案和解析>>

同步練習冊答案