(2009•三明)下列計算正確的是( )
A.a(chǎn)2•a2=2a4
B.(2a)2=4a2
C.3+3-1=-3
D.=±2
【答案】分析:根據(jù)冪運算的性質(zhì)進行計算即可.
解答:解:A、a2•a2=a4,故A錯誤;
B、(2a)2=4a2,正確;
C、3+3-1=1+=,錯誤;
D、根據(jù)算術(shù)平方根的定義可知:的算術(shù)平方根即4的正的平方根為2,錯誤.
故選B.
點評:熟練掌握冪運算的相關(guān)性質(zhì)和算術(shù)平方根的概念即可解答.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《四邊形》(09)(解析版) 題型:解答題

(2009•三明)已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,若△CDN的面積與△CMN的面積比為1:3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《三角形》(13)(解析版) 題型:解答題

(2009•三明)已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,若△CDN的面積與△CMN的面積比為1:3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2009•三明)為把產(chǎn)品打入國際市場,某企業(yè)決定從下面兩個投資方案中選擇一個進行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價為10萬美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬美元,每件產(chǎn)品銷售價為18萬美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時需上交0.05x2萬美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個投資方案的年利潤y1、y2與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個投資方案的最大年利潤;
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖南省婁底市冷水江市中考數(shù)學二模試卷(解析版) 題型:解答題

(2009•三明)已知:矩形ABCD中AD>AB,O是對角線的交點,過O任作一直線分別交BC、AD于點M、N(如圖①).
(1)求證:BM=DN;
(2)如圖②,四邊形AMNE是由四邊形CMND沿MN翻折得到的,連接CN,求證:四邊形AMCN是菱形;
(3)在(2)的條件下,若△CDN的面積與△CMN的面積比為1:3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃岡市浠水縣余堰中學九年級數(shù)學月考試卷(一)(解析版) 題型:解答題

(2009•三明)為把產(chǎn)品打入國際市場,某企業(yè)決定從下面兩個投資方案中選擇一個進行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價為10萬美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬美元,每件產(chǎn)品銷售價為18萬美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時需上交0.05x2萬美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個投資方案的年利潤y1、y2與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個投資方案的最大年利潤;
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?

查看答案和解析>>

同步練習冊答案