精英家教網 > 初中數學 > 題目詳情
(2006•海淀區(qū))如圖,已知直角坐標系中一條圓弧經過正方形網格的格點A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點的坐標為(0,4),D點的坐標為(7,0),試驗證點D是否在經過點A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

【答案】分析:(1)題利用“兩弦垂直平分線的交點為圓心”可確定圓心位置;
(2)先根據A、B、C三點坐標,用待定系數法求出拋物線的解析式,然后將D點坐標代入拋物線的解析式中,即可判斷出點D是否在拋物線的圖象上;
(3)由于C在⊙M上,如果CD與⊙M相切,那么C點必為切點;因此可連接MC,證MC是否與CD垂直即可.可根據C、M、D三點坐標,分別表示出△CMD三邊的長,然后用勾股定理來判斷∠MCD是否為直角.
解答:(1)解:如圖1,點M即為所求;

(2)解:由A(0,4),可得小正方形的邊長為1,從而B(4,4)、C(6,2)
設經過點A、B、C的拋物線的解析式為y=ax2+bx+4
依題意,解得
所以經過點A、B、C的拋物線的解析式為y=-x2+x+4
把點D(7,0)的橫坐標x=7代入上述解析式,得
所以點D不在經過A、B、C的拋物線上;

(3)證明:如圖,設過C點與x軸垂直的直線與x軸的交點為E,連接MC,作直線CD

∴CE=2,ME=4,ED=1,MD=5
在Rt△CEM中,∠CEM=90°
∴MC2=ME2+CE2=42+22=20
在Rt△CED中,∠CED=90°
∴CD2=ED2+CE2=12+22=5
∴MD2=MC2+CD2
∴∠MCD=90°
∵MC為半徑
∴直線CD是⊙M的切線.
點評:本題為綜合題,涉及圓、平面直角坐標系、二次函數等知識,需靈活運用相關知識解決問題.本題考查二次函數、圓的切線的判定等初中數學的中的重點知識,試題本身就比較富有創(chuàng)新,在網格和坐標系中巧妙地將二次函數與圓的幾何證明有機結合,很不錯的一道題,令人耳目一新.
練習冊系列答案
相關習題

科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(09)(解析版) 題型:解答題

(2006•海淀區(qū))已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經過點(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數的圖象經過(2)中拋物線上點(1,a),試在圖2所示直角坐標系中,畫出該反比例函數及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

科目:初中數學 來源:2010年浙江省杭州市十三中中考數學模擬試卷(3月份)(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標系中一條圓弧經過正方形網格的格點A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點的坐標為(0,4),D點的坐標為(7,0),試驗證點D是否在經過點A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數學 來源:2006年北京市海淀區(qū)中考數學試卷(解析版) 題型:解答題

(2006•海淀區(qū))如圖,已知直角坐標系中一條圓弧經過正方形網格的格點A、B、C.
(1)用直尺畫出該圓弧所在圓的圓心M的位置;
(2)若A點的坐標為(0,4),D點的坐標為(7,0),試驗證點D是否在經過點A、B、C的拋物線上;
(3)在(2)的條件下,求證:直線CD是⊙M的切線.

查看答案和解析>>

科目:初中數學 來源:2006年北京市海淀區(qū)中考數學試卷(解析版) 題型:解答題

(2006•海淀區(qū))已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經過點(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數的圖象經過(2)中拋物線上點(1,a),試在圖2所示直角坐標系中,畫出該反比例函數及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

同步練習冊答案