如圖,在等腰△ABC中,AB=AC=20,DE垂直平分AB.
(1)若△DBC的周長(zhǎng)為35,求BC的長(zhǎng);
(2)若BC=13,求△DBC的周長(zhǎng).
分析:(1)先根據(jù)線段垂直平分線的性質(zhì)得出AD=BD,故AD+CD=BD+CD=AC,再由△DBC的周長(zhǎng)為35即可得出BC的長(zhǎng);
(2)根據(jù)AD+CD=BD+CD=AC即可得出結(jié)論.
解答:解:(1)∵在等腰△ABC中,AB=AC=20,DE垂直平分AB,
∴AD=BD,
∴AD+CD=BD+CD=AC=20,
∵△DBC的周長(zhǎng)=(BD+CD)+BC=35,即AC+BC=35,
∴BC=35-AC=35-20=15;

(2)∵BC=13,由(1)知AD+CD=BD+CD=AC=20,
∴△DBC的周長(zhǎng)=(BD+CD)+BC=AC+BC=20+13=33.
點(diǎn)評(píng):本題考查的是線段垂直平分線的性質(zhì),熟知垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關(guān)系式為( 。
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點(diǎn)D,交另一腰AC于點(diǎn)E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點(diǎn),連接AM,DM.
(1)在圖中畫出△DEM關(guān)于點(diǎn)M成中心對(duì)稱的圖形;
(2)求證AM⊥DM;
(3)當(dāng)α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點(diǎn).若BC=8cm,則△BCE的周長(zhǎng)是
18
18
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案