精英家教網 > 初中數學 > 題目詳情

如圖,△ABC是等邊三角形,BD是AC邊上的高,延長BC到E使CE=CD、試判斷DB與DE之間的大小關系,并說明理由.

解:關系:DE=DB
理由:∵CD=CE,
∴∠E=∠EDC,
又∵∠ACB=60°,
∴∠E=30°,
又∵∠DBC=30°,
∴∠E=∠DBC,
∴DB=DE.
分析:BD是AC邊上的高,則∠CBD=30°,又有∠ACB=60°,CD=CE,可得DB與DE的關系.
點評:本題考查了等邊三角形的性質及三角形的外角的性質;利用三角形外角的性質得到30°的角是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉后到達△ACE的位置,那么旋轉角的度數是
60°
60°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習冊答案