如圖1,在平面直角坐標系中,O為坐標原點,點A(0,1)在y軸上,點B(3,0)在x軸上,M(x,0)是線段OB上一動點,N是x軸上方一動點,且滿足:ON=OA,MN=MB.
精英家教網
(1)求直線AB的解析式;
(2)若△OMN為直角三角形,求點M的坐標;
(3)在(2)的情況下,當x=
53
時,判斷點N與直線AB的位置關系,并說明理由.
分析:(1)設直線AB的解析式為y=kx+b,把AB兩點的坐標代入即可;
(2)由△OMN為直角三角形,OM、ON、MN都可能為斜邊,需要分三種情況討論,去掉沒解的情況,即得答案;
(3)由(2)得,當x=
5
3
時,△OMN是以MO為斜邊的直角三角形,求出N點的坐標將其代入直線AB的解析式y=-
1
3
x+1
,恰好能使等式成立,即可判定點N在直線AB上.
解答:精英家教網解:(1)設直線AB的解析式為y=kx+b
∵A(0,1),B(3,0)
0×k+b=1
3×k+b=0
解得:
k=-
1
3
b=1
(2分)
∴直線AB的解析式為y=-
1
3
x+1
(3分)

(2)由題意可得,ON=OA=1,MN=MB=3-x(4分)
∵△OMN為直角三角形
①若ON為斜邊,則1=x2+(3-x)2,即x2-3x+4=0,無解(5分)
②若MO為斜邊,則x2=(3-x)2+1,解得x=
5
3
(6分)
③若MN為斜邊,則(3-x)2=1+x2,解得x=
4
3
(7分)
∴點M的坐標為(
5
3
,0)
(
4
3
,0)
(9分)

(3)當x=
5
3
時,由(2)知此時△OMN是以MO為斜邊的直角三角形(10分)
且MO=x=
5
3
,MN=MB=3-x=
4
3

過N作NE⊥OB于E,
1
2
×ON×MN=
1
2
×OM×NE

NE=
4
5

OE=
ON2-NE2
=
3
5
,
即N(
3
5
4
5
)
(12分)
當x=
3
5
時,-
1
3
x+1=
4
5
,
∴點N(
3
5
,
4
5
)
在直線y=-
1
3
x+1

即當x=
5
3
時,N在直線AB上.(14分)
點評:本題是函數(shù)與三角形相結合的問題,在圖形中滲透運動的觀點是中考中經常出現(xiàn)的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

23、在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標為(-3,0).
(1)點A的坐標為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源:同步輕松練習 八年級 數(shù)學 上 題型:059

學校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫下表:

(2)根據表中的數(shù)據,將s作為縱坐標,n作為橫坐標,在如圖所示的平面直角坐標系中找出相應各點.

(3)請你猜一猜上述各點會在某一個函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結果,求出當n=10時,s的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年北京海淀區(qū)九年級第一學期期中測評數(shù)學試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對稱問題時發(fā)現(xiàn):

如圖1,當點為旋轉中心時,點繞著點旋轉180°得到點,點再繞著點旋轉180°得到點,這時點與點重合.

如圖2,當點為旋轉中心時,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,點繞著點旋轉180°得到點,小明發(fā)現(xiàn)P、兩點關于點中心對稱.

(1)請在圖2中畫出點、, 小明在證明P、兩點關于點中心對稱時,除了說明P、、三點共線之外,還需證明;

(2)如圖3,在平面直角坐標系xOy中,當、為旋轉中心時,點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點;點繞著點旋轉180°得到點. 繼續(xù)如此操作若干次得到點,則點的坐標為(),點的坐為.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在數(shù)學上,為了確定平面上點的位置,我們常用下面的方法:如圖甲,在平面內畫兩條互相垂直,并且有公共原點O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個平面直角坐標系,這是由法國數(shù)學家和哲學家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點的位置,例如,要確定點M的位置,只要作MP⊥x軸,MP⊥y軸,設垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點M的橫坐標,y叫做點M的縱坐標,有序數(shù)對(x,y)叫做M點的坐標,如圖甲,點M的坐標記作(2,3),
(1)△ABC在平面直角坐標系中的位置如圖乙,請把△ABC向右平移3個單位,在平面直角坐標系中畫出平移后的△A′B′C′;
(2)請寫出平移后點A′的坐標,記作______.

查看答案和解析>>

同步練習冊答案