某商場將每件進(jìn)價(jià)為80元的某種商品原來按每件100元售出,一天可售出100件,后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加10件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設(shè)后來該商品每件降價(jià)x元,商場每天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤2210元,則每件商品應(yīng)降價(jià)多少元?
②求y與x之間的函數(shù)關(guān)系式,并根據(jù)關(guān)系式求出該商品如何定價(jià)可使商場所獲利潤最多?最多為多少?

解:(1)若商店經(jīng)營該商品不降價(jià),則一天可獲利潤為:
100×(100-80)=2000(元);

(2)設(shè)后來該商品每件降價(jià)x元,依題意,得
y=(100-80-x)(100+10x)=-10x2+100x+2000,
①令y=2210,
-10x2+100x+2000=2210,
化簡得x2-10x+21=0.
解得x1=3,x2=7,
即每件商品應(yīng)降價(jià)3元或7元;
②y=-10x2+100x+2000=-10(x-5)2+2250,
∵-10<0,
∴當(dāng)x=5時(shí),y有最大值2250(元),
此時(shí)商品定價(jià)為95元,
答:商品定價(jià)為95元時(shí)可使商場所獲利潤最多,最多為2250元.
分析:(1)根據(jù)進(jìn)價(jià)為80元,售價(jià)為100元,銷售量為100件,求出利潤;
(2)可根據(jù)利潤y=降價(jià)后的單件利潤×降價(jià)后銷售的商品的件數(shù)列出函數(shù)關(guān)系式,
①令y=2210,列方程求出x的值;
②運(yùn)用配方法求二次函數(shù)的最大值即可.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用,解答本題的關(guān)鍵是根據(jù)利潤=總銷量×(售價(jià)-進(jìn)價(jià))列數(shù)函數(shù)關(guān)系式,注意掌握運(yùn)用配方法求二次函數(shù)的最大值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、某商場將每件進(jìn)價(jià)為80元的某種商品原來按每件100元出售,每天可售出100件,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品售價(jià)每降低1元,商場銷量平均每天可增加10件.
(1)假設(shè)銷售單價(jià)降低x元,那么銷售每件這種商品所獲得的利潤是
(20-x)
元;這種商品每天的銷售量是
(100+10x)
件(用含x的代數(shù)式表示);
(2)若商場經(jīng)營該商品一天要獲利潤2160元,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場將每件進(jìn)價(jià)為60元的某種商品原來按每件100元出售,一天可售出100件.后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低1元,其銷量可增加20件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元?
(2)設(shè)后來該商品每件降價(jià)x元,商場一天可獲利潤y元.
①若商場經(jīng)營該商品一天要獲利潤7000元,則每件商品應(yīng)降價(jià)多少元?
②求出y與x之間的函數(shù)關(guān)系式,并通過畫該函數(shù)圖象的草圖,觀察其圖象的變化趨勢,結(jié)合題意寫出當(dāng)x取何值時(shí),商場獲利潤不少于7000元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場將每件進(jìn)價(jià)為200元的某種商品原來按每件250元出售,一月可售出100件,后來經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每增加10元,其銷量可減少5件.
(1)求銷售量y(件)與售價(jià)x(元)之間的函數(shù)關(guān)系;
(2)問售價(jià)定為多少時(shí),可以獲得最大利潤,最大利潤是多少?
(3)某部門規(guī)定該商品售價(jià)不得高于300元,該商場能否到達(dá)每月獲得利潤不低于7000元的目的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場將每件進(jìn)價(jià)為80元的某種商品原來按每件100元出售,一天可售出100件,經(jīng)調(diào)查這種商品每降低1元,其銷量可增加10件.
①求商場原來一天可獲利潤多少元?
②設(shè)后來該商品每件降價(jià)x元,一天可獲利潤y元.
1)若經(jīng)營該商品一天要獲利2160元,則每件商品應(yīng)降價(jià)多少元?
2)當(dāng)售價(jià)為多少時(shí),獲利最大并求最大值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某商場將每件進(jìn)價(jià)為60元的商品按100元售出,每天可售20件,為了迎接“國慶節(jié)”,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,盡快減少庫存,通過調(diào)查發(fā)現(xiàn),該商品若單價(jià)每降低4元,其銷量就增加8件.
(1)求商場經(jīng)營該商品原來一天可獲利潤多少元;
(2)若商場經(jīng)營該商品一天要獲利1200元,則每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

同步練習(xí)冊答案