如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且BD∥CO.
(1)求證:△ADB∽△CBO;
(2)若AB=2,BC=數(shù)學(xué)公式,求AD的長(zhǎng)(結(jié)果保留根號(hào)).

(1)證明:∵AB為圓O的直徑,
∴∠D=90°,
又BC是圓O的切線,
∴∠ABC=90°,
∴∠D=∠ABC,
又DB∥OC,
∴∠ABD=∠COB,
∴△ADB∽△CBO;

(2)解:設(shè)AD=x,
在直角三角形ABD中,由AB=2,AD=x,
根據(jù)勾股定理得:DB=,
由(1)得到△ADB∽△CBO,又BO=AB=1,
=,即=
兩邊平方化簡(jiǎn)得:x2=,
解得:x=
則AD=
分析:(1)根據(jù)AB為圓O的直徑,根據(jù)圓周角定理得到∠D為90°,又BC為圓O的切線,根據(jù)切線性質(zhì)得到∠CBO=90°,進(jìn)而得到這兩個(gè)角相等,又DB與OC平行,根據(jù)兩直線平行,得到一對(duì)內(nèi)錯(cuò)角相等,從而利用兩角對(duì)應(yīng)相等的兩三角形相似即可得證;
(2)設(shè)AD=x,在直角三角形ADB中,由AB和設(shè)出的AD,利用勾股定理表示出DB,再根據(jù)半徑OB等于直徑AB的一半求出OB,然后由(1)得到的相似三角形,根據(jù)相似三角形的對(duì)應(yīng)邊成比例列出關(guān)于x的方程,求出方程的解即可得到x的值即為AD的長(zhǎng).
點(diǎn)評(píng):此題考查了切線的性質(zhì),平行線的性質(zhì),圓周角定理以及相似三角形的判定與性質(zhì).對(duì)于第一問這樣的幾何證明題,要求學(xué)生多觀察,多分析,根據(jù)題意選擇合適的判定方法;第二問的突破點(diǎn)在于利用勾股定理表示出BD,借助第一問的相似得比例.?dāng)?shù)形結(jié)合及方程的思想都是數(shù)學(xué)中常用的重要思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長(zhǎng)線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長(zhǎng)度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽(yáng)光與水平線成60°角時(shí),電線桿的影子BC的長(zhǎng)度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案