【題目】如圖,在平面直角坐標系中,,, ,...都是等腰直角三角形,其直角頂點,,,...均在直線上,設,,,...的面積分別為,,,...,依據(jù)圖形所反映的規(guī)律,S2020=__________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,M是AB的中點,P是BC邊上的動點,連結(jié)PM,以點P為圓心,PM長為半徑作⊙P.
(1)當BP= 時,△MBP~△DCP;
(2)當⊙P與正方形ABCD的邊相切時,求BP的長;
(3)設⊙P的半徑為x,請直接寫出正方形ABCD中恰好有兩個頂點在圓內(nèi)的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+c與y軸交于點A(0,6),與x軸交于點B(﹣2,0),C(6,0).
(1)直接寫出拋物線的解析式及其對稱軸;
(2)如圖2,連接AB,AC,設點P(m,n)是拋物線上位于第一象限內(nèi)的一動點,且在對稱軸右側(cè),過點P作PD⊥AC于點E,交x軸于點D,過點P作PG∥AB交AC于點F,交x軸于點G.設線段DG的長為d,求d與m的函數(shù)關系式,并注明m的取值范圍;
(3)在(2)的條件下,若△PDG的面積為,
①求點P的坐標;
②設M為直線AP上一動點,連接OM交直線AC于點S,則點M在運動過程中,在拋物線上是否存在點R,使得△ARS為等腰直角三角形?若存在,請直接寫出點M及其對應的點R的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E在矩形ABCD的邊AD上,AD=6,tan∠ACD=,連接CE,線段CE繞點C旋轉(zhuǎn)90°,得到線段CF,以線段EF為直徑做⊙O.
(1)請說明點C一定在⊙O上的理由;
(2)點M在⊙O上,如圖2,MC為⊙O的直徑,求證:點M到AD的距離等于線段DE的長;
(3)當△AEM面積取得最大值時,求⊙O半徑的長;
(4)當⊙O與矩形ABCD的邊相切時,計算扇形OCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是與弦所圍成圖形的外部的一定點,是弦上的一動點,連接交于點.已知,設,兩點間的距離為,,兩點間的距離為,,兩點間的距離為.
小石根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù),隨自變量的變化而變化的規(guī)律進行了探究,下面是小石的探究過程,請補充完整:
(1)按照下表中自變量的值進行取點、畫圖、測量分別得到了,與的幾組對應值:
0 | 1 | 2 | 3 | 4 | 5 | 5.40 | 6 | |
4.63 | 3.89 | 2.61 | 2.15 | 1.79 | 1.63 | 0.95 | ||
1.20 | 1.11 | 1.04 | 0.99 | 1.02 | 1.21 | 1.40 | 2.21 |
(2)在同一平面直角坐標系中,描出補全后的表中各組數(shù)值所對應的點,,并畫出函數(shù),的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當為的中點時,的長度約為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣5ax+c與坐標軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點B在x軸上,AC=BC,過點B作BD⊥x軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.
(1)求拋物線的解析式及點D的坐標;
(2)當△CMN是直角三角形時,求點M的坐標;
(3)試求出AM+AN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線經(jīng)過點和,點的坐標為,點是線段上的動點(點不與點重合),直線經(jīng)過點,并與交于點,過點作,交于點.
(1)求的函數(shù)表達式;
(2)當時,
①求點的坐標;
②求.
(3)將點的橫坐標記為,在點移動的過程中,直接寫出的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC的中點,連接DE,P是DE上一點,∠BPC=90°,延長CP交AD于點F.⊙O經(jīng)過P、D、F,交CD于點G.
(1)求證:DFDP;
(2)若,,求DG的長;
(3)連接BF,若BF是⊙O的切線,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,AB=AC,將線段AC繞點A逆時針旋轉(zhuǎn)α°(0<α<180),得到線段AD,連接BD,交AC于點P.
(1)當α=90時,
①依題意補全圖形;
②求證:PD=2PB;
(2)寫出一個α的值,使得PD=PB成立,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com