精英家教網 > 初中數學 > 題目詳情

在銳角△ABC中,AB=AC,∠A使關于x的方程-sinA x+sinA-=0有兩個相等的實數根.

1.判斷△ABC的形狀;

2.設D為BC上的一點,且DE⊥AB于E,DF⊥AC于F,若DE=m,DF=n,且3m=4n和m2+n2=25,求AB的長.

 

【答案】

 

1.根據題意得⊿=,,A=60°

∵AB=AC,∴△ABC是等邊三角形;(4分)

2.根據題意得,解得即DE=4,DF=3

BD=

CD=

AB=BC=CD+BD=   (10分)

【解析】(1)利用⊿=0求出∠A的值為60°,然后判斷△ABC的形狀;

(2)利用二元二次方程組求出DE、DF的值,再根據三角函數的性質求出AB的長。

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在銳角△ABC中,a、b、c分別表示為∠A、∠B、∠C的對邊,O為其外心,則O點到三邊的距離之比為( 。
A、a:b:c
B、
1
a
1
b
1
c
C、cosA:cosB:cosC
D、sinA:sinB:sinC

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網在銳角△ABC中,最大的高線AH等于中線BM,求證:∠B<60°(如圖).

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在銳角△ABC中,∠BAC=60°,BD、CE為高,F為BC的中點,連接DE、DF、EF,則結論:①B、E、D、C四點共圓;②AD•AC=AE•AB;③△DEF是等邊三角形;④當∠ABC=45°時,BE=
2
DE中,一定正確的有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南開區(qū)一模)在銳角△ABC中,∠BAC=60°,BD、CE為高,F是BC的中點,連接DE、EF、FD,則以下結論中一定正確的個數有( 。
①EF=FD;②AD:AB=AE:AC;③△DEF是等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

在銳角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,則△ABC的面積等于(  )

查看答案和解析>>

同步練習冊答案