【題目】如圖,已知ABC是等邊三角形

(1) 如圖1,點E在線段AB上,點D在射線CB上,且ED=EC,將BCE繞點C順時針旋轉(zhuǎn)60°ACF,連接EF,猜想線段AB、DB、AF之間的數(shù)量關(guān)系

(2) E在線段BA的延長線上,其他條件與(1)中的一致,請在圖2上將圖形補充完整,并猜想證明線段AB、DB、AF之間的數(shù)量關(guān)系

【答案】(1)猜想:AB=AF+BD;(2)AB=AF-BD;

【解析】

(1) 猜想:AB=AF+BD ;(2) 首先根據(jù)點E在線段BA的延長線上,在圖2的基礎(chǔ)上將圖形補充完整,然后判斷出CEF是等邊三角形,即可判斷出EF=EC,再根據(jù)ED=EC,可得ED=EF,CAF=BAC=60°,再判斷出∠DBE=EAF,BDE=AEF;最后根據(jù)全等三角形判定的方法,判斷出EDB≌△FEA,即可判斷出BD=AE,EB=AF,進而判斷出AF=AB+BD即可.

(1)猜想:AB=AF+BD;

(2) 猜想:AB=AF-BD,

如圖,

,

ED=EC=CF,

BCE繞點C順時針旋轉(zhuǎn)60°ACF,

∴∠ECF=60°,BE=AFEC=CF,BC=AC,

CEF是等邊三角形,

EF=EC,

又∵ED=EC,

ED=EF,

AB=AC,BC=AC,

ABC是等邊三角形,

∴∠ABC=60°,

又∵∠CBE=CAF,

∴∠CAF=60°,

∴∠EAF=180CAFBAC=180°60°60°=60°

∴∠DBE=EAF

ED=EC,

∴∠ECD=EDC,

∴∠BDE=ECD+DEC=EDC+DEC,

又∵∠EDC=EBC+BED,

∴∠BDE=EBC+BED+DEC=60°+BEC,

∵∠AEF=CEF+BEC=60°+BEC,

∴∠BDE=AEF,

EDBFEA中,

EDBFEA(AAS)

BD=AE,EB=AF

BE=AB+AE,

AF=AB+BD,

AB,DB,AF之間的數(shù)量關(guān)系是:

AB=AF-BD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交兩點A(﹣1,0),B(3,0),過點A作直線AC與拋物線交于C點,它的坐標(biāo)為(2,﹣3).

(1)求拋物線及直線AC的解析式;

(2)P是線段AC上的一個動點,(不與A,C重合),過P點作y軸的平行線交拋物線于E點,點E與點A、C圍成三角形,求出ACE面積的最大值;

(3)點G為拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的F點坐標(biāo);如果不存在,如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與軸交于點、,且,與軸的正半軸的交點在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個數(shù)是( )個.

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點O,延長BA到點D,使AD=AO,連接DO,若BD=BC,ABC=54,則BCA的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點P在射線OM上移動,兩直角邊分別與OA、OB相交于點C、D,問PCPD相等嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是矩形ABCD邊AD上的一個動點,且與點A、點D不重合,連結(jié)BE、CE,過點B作BFCE,過點C作CFBE,交點為F點,連接AF、DF分別交BC于點G、H,則下列結(jié)論錯誤的是( 。

A. GH=BC B. SBGF+SCHF=SBCF

C. S四邊形BFCE=ABAD D. 當(dāng)點E為AD中點時,四邊形BECF為菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,對角線平分,,,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtADE中,DAE=90°,C是邊AE上任意一點(點C與點A、E不重合),以AC為一直角邊在RtADE的外部作Rt△ABC,∠BAC=90°,連接BE、CD.

(1)在圖1中,若AC=AB,AE=AD,現(xiàn)將圖1中的RtADE繞著點A順時針旋轉(zhuǎn)銳角α,得到圖2,那么線段BE.CD之間有怎樣的關(guān)系,寫出結(jié)論,并說明理由;

(2)在圖1中,若CA=3,AB=5,AE=10,AD=6,將圖1中的RtADE繞著點A順時針旋轉(zhuǎn)銳角α,得到圖3,連接BD、CE.

求證:△ABE∽△ACD;

計算:BD2+CE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.

(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;

(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).

查看答案和解析>>

同步練習(xí)冊答案