【題目】如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、B(1,0)、C(0,3)三點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合),過點P作y軸的垂線,垂足點為E,連接AE.
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關系式,直接寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取到最大值時,過點P作x軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為點P′,求出P′的坐標,并判斷P′是否在該拋物線上.
【答案】
(1)解:∵拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、B(1,0)、C(0,3)三點,
∴ ,
解得 ,
∴解析式為y=﹣x2﹣2x+3
∵﹣x2﹣2x+3=﹣(x+1)2+4,
∴拋物線頂點坐標D為(﹣1,4).
(2)解:∵A(﹣3,0),D(﹣1,4),
∴設AD為解析式為y=kx+b,有 ,
解得 ,
∴AD解析式:y=2x+6,
∵P在AD上,
∴P(x,2x+6),
∴S△APE= PEyP= (﹣x)(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),當x=﹣ =﹣ 時,S取最大值 .
(3)解:如圖1,設P′F與y軸交于點N,過P′作P′M⊥y軸于點M,
∵△PEF沿EF翻折得△P′EF,且P(﹣ ,3),
∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E= ,
∵PF∥y軸,
∴∠PFE=∠FEN,
∵∠PFE=∠P′FE,
∴∠FEN=∠P′FE,
∴EN=FN,
設EN=m,則FN=m,P′N=3﹣m.
在Rt△P′EN中,
∵(3﹣m)2+( )2=m2,
∴m= .
∵S△P′EN= P′NP′E= ENP′M,
∴P′M= .
在Rt△EMP′中,
∵EM= = ,
∴OM=EO﹣EM= ,
∴P′( , ).
當x= 時,y=﹣( )2﹣2 +3= ≠ ,
∴點P′不在該拋物線上.
【解析】(1)利用待定系數(shù)法把A、B、C三點坐標代入解析式,求出a、b、c即可;(2)由于P在AD上運動,須求出AD的解析式,設出P的橫坐標為x,用x的代數(shù)式分別表示P的縱坐標、PE長,代入三角形面積公式,構建函數(shù),用配方法求出最值;(3)利用折疊的性質得出對應邊相等,設EN=m,用m的代數(shù)式分別表示P' 坐標,將橫坐標代入解析式,所求出的結果是否等于P'的縱坐標可判斷出.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站應建在距A站多少千米處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期三個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調查中,張老師一共調查了 名同學,其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖 1,是一個長為 2m,寬為 2n 的長方形,沿圖中虛線用剪刀將其均分成四個完全相同的小長方形,然后按圖 2 的形狀拼圖.
(1)圖 2 中的圖形陰影部分的邊長為 ;(用含 m、n 的代數(shù)式表示)
(2)請你用兩種不同的方法分別求圖 2 中陰影部分的面積; 方法一: ;方法二: .
(3)觀察圖 2,請寫出代數(shù)式(m+n)2、(m﹣n)2、4mn 之間的關系式: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在直線跑道上同起點、同終點、同方向勻速跑步500米,先到終點的人原地休息.已知甲先出發(fā)2秒.在跑步過程中,甲、乙兩人的距離y(米)與乙出發(fā)的時間t(秒)之間的關系如圖所示,給出以下結論:①a=8;②b=92;③c=123.其中正確的是( )
A.①②③
B.僅有①②
C.僅有①③
D.僅有②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】[感知]
如圖①,△ABC是等邊三角形,D是邊BC上一點(點D不與點B、C重合),作∠EDF=60°,使角的兩邊分別交邊AB、AC于點E、F,且BD=CF.若DE⊥BC,則∠DFC的大小是 度;
[探究]
如圖②,△ABC是等邊三角形,D是邊BC上一點(點D不與點B、C重合),作∠EDF=60°,使角的兩邊分別交邊AB、AC于點E、F,且BD=CF.求證:BE=CD;
[應用]
在圖③中,若D是邊BC的中點,且AB=2,其它條件不變,如圖③所示,則四邊形AEDF的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,AB=2 ,AC是對角線,∠B=60°,點E在BC邊上,點F在DC邊上,且∠EAF=60°,AE與DC的延長線交于點M,AF與BC的延長線交于點N.
(1)如圖1,若點E為BC邊上的中點.
①求證:△ACM≌△ACN;
(2)如圖2,若點E為BC邊上的任意點(不與點B,C重合),請說明CMNC是一個定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩種商品原來的單價和為100元.因市場變化,甲商品降價10%,乙商品提價40%,調價后兩種商品的單價和比原來的單價和提高了20%.甲、乙兩種商品原來的單價各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com