【題目】如圖,二次函數(shù)y=ax2﹣4ax(a≠0)的圖象與直線y=kx+3交于點(diǎn)A(﹣1,)、點(diǎn)C兩點(diǎn).
(1)求a,k的值;
(2)點(diǎn)P在第一象限的拋物線上,其橫坐標(biāo)為t,連接PC、PA,設(shè)△PCA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式:(直接寫出t的取值范圍)
(3)在(2)的條件下,作CE⊥x軸于E,點(diǎn)P直線y=kx+3下方時,連接OP、BC交于D,連接ED,當(dāng)∠ODE=90°時,求t和S的值.
【答案】(1)a=,k=;(2)S=,(4<t<6)或,( t>6); (3)解得t=5,S=.
【解析】
(1)將A(-1,)代入二次函數(shù)y=ax2-4ax(a≠0)與直線y=kx+3中,可得a,k的值;
(2)分P點(diǎn)再BC中,與BC右側(cè)兩種情況討論計(jì)算可得答案;
(3)由∠ODE=90°,=-1,可得方程D點(diǎn)坐標(biāo),計(jì)算可得t,s的值.
解:(1)將A(-1,)代入二次函數(shù)y=ax2-4ax(a≠0)與直線y=kx+3;
可得:a=,k=;
(2)易得B點(diǎn)坐標(biāo)(4,0),聯(lián)立二次函數(shù)y=,與一次函數(shù)y=,可得
C點(diǎn)坐標(biāo)(6,6),
如圖
當(dāng)P點(diǎn)再BC中間時候,橫坐標(biāo)為t,(4<t<6),可得P(t,),D(t,)
=-()=,
過點(diǎn)P做AC的垂線垂足為D,過A點(diǎn)做DP的垂線,設(shè)垂線長為,過C點(diǎn)做DP的垂線, 垂線長為,可得==7,
= ()= ()7=,(4<t<6);
如圖,
同理,當(dāng)P點(diǎn)再C右側(cè)時,即t>6時,
同理過點(diǎn)PD⊥x軸,交AC與D點(diǎn),過點(diǎn)C做垂線垂直PD,垂線長為,過A點(diǎn)做垂線垂直PD,垂線長為,易得==7,=-()=,
易得:= ()=,( t>6)
(3)如圖
易得:E點(diǎn)坐標(biāo)(6,0),B點(diǎn)(4,0),
可得BC直線的方程:y=3x-12,
設(shè)D點(diǎn)坐標(biāo)為(x,3x-12),4<x<6,由∠ODE=90°,
可得=-1,可得,,
化簡得:;
可得:=3(舍去),=,
可得:D點(diǎn)坐標(biāo)(,)
可得OD的方程為y=,
聯(lián)立OD與二次函數(shù)的方程可得:
可得x=5,即t=5,
代入=,可得S=,
故答案:t=5,s=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點(diǎn)把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是梯形ABCD的內(nèi)切圓,AB∥DC,E、M、F、N分別是邊AB、BC、CD、DA上的切點(diǎn).
(1)求證:AB+CD=AD+BC
(2)求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一圓內(nèi)接正八邊形ABCDEFGH,若△ADE的面積為8,則正八邊形ABCDEFGH的面積為( )
A. 32 B. 40 C. 24 D. 30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標(biāo)有數(shù)字1,2,3;乙袋中裝有3個完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2,﹣3,現(xiàn)從甲袋中隨機(jī)摸出一個小球,將標(biāo)有的數(shù)字記錄為x,再從乙袋中隨機(jī)摸出一個小球,將標(biāo)有的數(shù)字記錄為y,確定點(diǎn)M的坐標(biāo)為(x,y).
(1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在反比例函數(shù)y=的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩個全等的等腰直角三角形ABC和EDC中,∠ACB=∠ECD=90°,點(diǎn)A與點(diǎn)E重合,點(diǎn)D與點(diǎn)B重合.現(xiàn)△ABC不動,把△EDC繞點(diǎn)C按順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<90°).
(1)如圖②,AB與CE交于點(diǎn)F,ED與AB,BC分別交于點(diǎn)M,H.求證:CF=CH;
(2)如圖③,當(dāng)α=45°時,試判斷四邊形ACDM的形狀,并說明理由;
(3)如圖②,在△EDC繞點(diǎn)C旋轉(zhuǎn)的過程中,連結(jié)BD,當(dāng)旋轉(zhuǎn)角α的度數(shù)為多少時,△BDH是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB、AC是圓O的兩條弦,AB=AC,過圓心O作OH⊥AC于點(diǎn)H.
(1)如圖1,求證:∠B=∠C;
(2)如圖2,當(dāng)H、O、B三點(diǎn)在一條直線上時,求∠BAC的度數(shù);
(3)如圖3,在(2)的條件下,點(diǎn)E為劣弧BC上一點(diǎn),CE=6,CH=7,連接BC、OE交于點(diǎn)D,求BE的長和的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com