(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)你說明理由.

【答案】分析:(1)根據(jù)直線y=kx+3與y軸相交于點(diǎn)C,得C(0,3),由tan∠OBC=1可求得點(diǎn)B(3,0);所以a=-1,即y=-x2+2x+3=-(x-1)2+4,頂點(diǎn)D(1,4),代入一次函數(shù)可知k=1.
(2)在y軸上取一點(diǎn)F(0,-3),則OF=OC=3,由對(duì)稱性可知:∴∠CBF=90°,設(shè)直線BF與二次函數(shù)y=-x2+2x+3的圖象交于點(diǎn)P,由(1)知B(3,0),直線BF的函數(shù)關(guān)系式為y=x-3,聯(lián)立方程組求解可得點(diǎn)P(-2,-5),所以存在點(diǎn)P(1,4)或P(-2,-5),使得△PBC是以BC為一條直角邊的直角三角形.
解答:解:(1)由直線y=kx+3與y軸相交于點(diǎn)C,得C(0,3)
∵tan∠OBC=1
∴∠OBC=45°∴OB=OC=3
∴點(diǎn)B(3,0)(1分)
∵點(diǎn)B(3,0)在二次函數(shù)y=ax2+2x+3的圖象上
∴9a+6+3=0(2分)
∴a=-1(3分)
∴y=-x2+2x+3=-(x-1)2+4
∴頂點(diǎn)D(1,4)(4分)
又∵D(1,4)在直線y=kx+3上
∴4=k+3
∴k=1
即:a=-1,k=1.(5分)

(2)在二次函數(shù)y=-x2+2x+3的圖象上存在點(diǎn)P,使得△PBC是以BC為一條直角邊的直角三角形(6分)
由(1)可知,直線y=x+3與x軸的交點(diǎn)為E(-3,0)
∴OE=OC=3
∴∠CEO=45°
∵∠OBC=45°
∴∠ECB=90°(7分)
∴∠DCB=90°
∴△DCB是以BC為一條直角邊的直角三角形,且點(diǎn)D(1,4)在二次函數(shù)的圖象上,則點(diǎn)D是所求的P點(diǎn)(8分)
方法一:設(shè)∠CBP=90°,點(diǎn)P在二次函數(shù)y=-x2+2x+3的圖象上,則△PBC是以BC為一條直角邊的直角三角形,
∵∠CBO=45°
∴∠OBP=45°設(shè)直線BP與y軸交于點(diǎn)F,則F(0,-3)
∴直線BP的表達(dá)式為y=x-3(9分)
解方程組

由題意得,點(diǎn)P(-2,-5)為所求.
綜合①②,得二次函數(shù)y-x2+2x+3的圖象上存在點(diǎn)P(1,4)或
P(-2,-5),使得△PBC是以BC為一條直角邊的直角三角形(10分)
方法二:在y軸上取一點(diǎn)F(0,-3),則OF=OC=3,由對(duì)稱性可知,
∠OBF=∠OBC=45°
∴∠CBF=90°設(shè)直線BF與二次函數(shù)y=-x2+2x+3的圖象交于點(diǎn)P,由(1)知B(3,0),
∴直線BF的函數(shù)關(guān)系式為y=x-3(以下與方法一同)(9分)
解方程組

由題意得,點(diǎn)P(-2,-5)為所求.
綜合①②,得二次函數(shù)y-x2+2x+3的圖象上存在點(diǎn)P(1,4)或
P(-2,-5),使得△PBC是以BC為一條直角邊的直角三角形.
點(diǎn)評(píng):主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點(diǎn)的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2005•茂名)如圖,已知二次函數(shù)y=ax2+2x+3的圖象與x軸交于點(diǎn)A、點(diǎn)B(點(diǎn)B在X軸的正半軸上),與y軸交于點(diǎn)C,其頂點(diǎn)為D,直線DC的函數(shù)關(guān)系式為y=kx+3,又tan∠OBC=1,
(1)求a、k的值;
(2)探究:在該二次函數(shù)的圖象上是否存在點(diǎn)P(點(diǎn)P與點(diǎn)B、C補(bǔ)重合),使得△PBC是以BC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形認(rèn)識(shí)初步》(02)(解析版) 題型:選擇題

(2005•茂名)如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是( )

A.90°
B.80°
C.70°
D.60°

查看答案和解析>>

同步練習(xí)冊(cè)答案