【題目】某校開設(shè)了豐富多彩的實(shí)踐類拓展課程,分別設(shè)置了體育類、藝術(shù)類、文學(xué)類及其它類課程(要求人人參與,每人只能選擇一門課程).為了解學(xué)生喜愛的拓展課類別,學(xué)校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,完成下列問題:

(1)此次共調(diào)查了多少人?

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整

(3)求文學(xué)類課程在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(4)若該校有1500名學(xué)生,請估計(jì)喜歡體育類拓展課的學(xué)生人數(shù).

【答案】1200人;(2)畫圖見解析;(3108°;(4600

【解析】

1)結(jié)合兩個(gè)統(tǒng)計(jì)圖,根據(jù)體育類80人所占的百分比是40%,進(jìn)行計(jì)算;

2)根利用總?cè)藬?shù)乘以20%求得參加藝術(shù)社團(tuán)的人數(shù),再求得參加其它社團(tuán)的人數(shù),補(bǔ)全直方圖;

3)利用360°乘以參加文學(xué)社團(tuán)的所占的比例求得圓心角的度數(shù);

4)求出文學(xué)類所占的百分比,再用1500乘以百分比估計(jì)即可.

(1)調(diào)查的總?cè)藬?shù)是80÷40%=200(),

故答案是:200

(2) 參加藝術(shù)社團(tuán)的人數(shù)是200×20%=40(),

參加其它社團(tuán)的人數(shù)200804060=20().

(3) 文學(xué)社團(tuán)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù)是360× =108° .

(4)1500×40%=600().

∴估計(jì)該校喜歡體育類社團(tuán)的學(xué)生有600人。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)PAB的延長線上,且∠CAB=2∠BCP.

(1)求證:直線CP是⊙O的切線;

(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E、F分別是ADBC上的兩點(diǎn),EF將四邊形ABCD分成兩個(gè)邊長為5cm的正方形,∠DEF=∠EFB=∠B=∠D=90°;點(diǎn)HCD上一點(diǎn)且CH=lcm,點(diǎn)P從點(diǎn)H出發(fā),沿HDlcm/s的速度運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿ABC5cm/s的速度運(yùn)動.任意一點(diǎn)先到達(dá)終點(diǎn)即停止運(yùn)動;連結(jié)EP、EQ.

(1)如圖1,點(diǎn)QAB上運(yùn)動,連結(jié)QF,當(dāng)t= 時(shí),QF//EP;

(2)如圖2,若QEEP,求出t的值;

(3)試探究:當(dāng)t為何值時(shí),的面積等于面積的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程

(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;

(2)若等腰三角形ABC的一邊長為,另兩邊的長b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,

請按要求完成下列各題:

(1)用2B鉛筆畫ADBC(D為格點(diǎn)),連接CD;

(2)線段CD的長為   

(3)請你在ACD的三個(gè)內(nèi)角中任選一個(gè)銳角,若你所選的銳角是   ,則它所對應(yīng)的正弦函數(shù)值是   ;

(4)若EBC中點(diǎn),則tanCAE的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD是由六個(gè)正方形組成的完美長方形,中間最小正方形的面積是1,最大正方形的邊長為x.

(1)x的代數(shù)式表示長方形ABCD的長是____________、寬是______

(2)求長方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形OABC擺放在平面直角坐標(biāo)系中,點(diǎn)Ax軸上,點(diǎn)Cy軸上,OA3,OC2,過點(diǎn)A的直線交矩形OABC的邊BC于點(diǎn)P,且點(diǎn)P不與點(diǎn)B、C重合,過點(diǎn)P作∠CPD=∠APB,PDx軸于點(diǎn)D,交y軸于點(diǎn)E

(1)若△APD為等腰直角三角形.

求直線AP的函數(shù)解析式;

x軸上另有一點(diǎn)G的坐標(biāo)為(2,0),請?jiān)谥本APy軸上分別找一點(diǎn)M、N,使△GMN的周長最小,并求出此時(shí)點(diǎn)N的坐標(biāo)和△GMN周長的最小值.

(2)如圖2,過點(diǎn)EEFAPx軸于點(diǎn)F,若以AP、EF為頂點(diǎn)的四邊形是平行四邊形,求直線PE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線 ABCD,直線 a 分別交 AB、CD 于點(diǎn) E、F,點(diǎn) M 在線段 EF 上,點(diǎn) P 直線 CD 上的一個(gè)動點(diǎn)(點(diǎn) P 不與點(diǎn) F 重合)

(1)如圖 1,當(dāng)點(diǎn) P 在射線 FC 上移動時(shí),∠FMP+∠FPM 與∠AEF 有什么數(shù)量關(guān)系? 請說明理由;

(2)如圖 2,當(dāng)點(diǎn) P 在射線 FD 上移動時(shí),∠FMP+∠FPM 與∠AEF 有什么數(shù)量關(guān)系? 請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角三角板和直角三角板,,,

.

(1)如圖1,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動,將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)平分時(shí),的度數(shù);

(2)(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說明理由;

(3)如圖3,將頂點(diǎn)和頂點(diǎn)重合,保持三角板不動,將三角板繞點(diǎn)旋轉(zhuǎn).當(dāng)落在內(nèi)部時(shí),直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案