如圖,AB是⊙O的切線,切點(diǎn)為B,AO交⊙O于點(diǎn)C,過(guò)點(diǎn)C作DC⊥OA,交AB于點(diǎn)D,連接OB、OD.已知∠A=30°,⊙O的半徑為4.
(1)求BD的長(zhǎng);
(2)求圖中陰影部分的面積.
(1)∵AB是⊙O的切線,
∴OB⊥AB,
∵∠A=30°,
∴∠AOB=90°-∠A=60°,
∵DC⊥OA,
∴CD是⊙O的切線,
∴∠BOD=
1
2
∠AOB=30°,
∵⊙O的半徑為4,
即OB=4,
∴BD=OB•tan∠BOD=4×
3
3
=
4
3
3


(2)∵在Rt△AOB中,∠A=30°,OB=4,
∴AB=
OB
tan∠A
=4
3

∴AD=AB-BD=
8
3
3
,
∵DC⊥OA,
∴CD=
1
2
AD=
4
3
3
,
∴AC=
AD2-CD2
=4,
∴S陰影=S△AOB-S△ACD-S扇形OBC=
1
2
×4×4
3
-
1
2
×4×
4
3
3
-
60×π×42
360
=
16
3
3
-
8
3
π.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線,切點(diǎn)是A、B,已知∠P=70°,OA=3,那么∠AOB度數(shù)為( 。
A.100°B.110°C.120°D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,AC是⊙O的直徑,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切線,E是切點(diǎn),
求證:(1)ODAB;
(2)2DE2=BE•OD;
(3)設(shè)BE=2,∠ODE=a,則cos2a=
1
OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知矩形ABCD內(nèi)接于⊙O,BD為⊙O直徑,將△BCD沿BD所在的直線翻折后,得到點(diǎn)C的對(duì)應(yīng)點(diǎn)N仍在⊙O上,BN交AD與點(diǎn)M.若∠AMB=60°,⊙O的半徑是3cm.
(1)求點(diǎn)O到線段ND的距離;
(2)過(guò)點(diǎn)A作BN的平行線EF,判斷直線EF與⊙O的位置關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用一把帶有刻度的直角尺,
①可以畫出兩條平行的直線a與b,如圖(4)
②可以畫出∠AOB的平分線OP,如圖(2)
③可以檢驗(yàn)工件的凹面是否成半圓,如圖(3)
④可以量出一個(gè)圓的半徑,如圖(4)

上述四個(gè)方法中,正確的個(gè)數(shù)是( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)O為Rt△ABC斜邊AC上一點(diǎn),以點(diǎn)O為圓心,OA長(zhǎng)為半徑的⊙O與BC相切于點(diǎn)E,與AC相交于點(diǎn)D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關(guān)系,并求當(dāng)AE=EC時(shí)tanC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過(guò)D作DE⊥BC,垂足為E,連接OE,CD=
3
,∠ACB=30°.
(1)求證:DE是⊙O的切線;
(2)分別求AB,OE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案