如圖①,在平面直角坐標(biāo)系中,已知△ABC是等邊三角形,點(diǎn)B的坐標(biāo)為(12,0),動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.以點(diǎn)P為頂點(diǎn),作等邊△PMN,點(diǎn)M,N在x軸上.

1.當(dāng)t為何值時(shí),點(diǎn)M與點(diǎn)O重合.

2.求點(diǎn)P坐標(biāo)和等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示).

3.如果取OB的中點(diǎn)D,以O(shè)D為邊在△AOB內(nèi)部作如圖②所示的矩形ODEF,點(diǎn)E在線段AB上.設(shè)等邊△PMN和矩形ODEF重疊部分的面積為S,請(qǐng)求出當(dāng)秒時(shí)S與的函數(shù)關(guān)系式,并求出S的最大值.

 

 

1.(1)如圖①,點(diǎn)M與點(diǎn)O重合.

∵△ABC是等邊三角形,∴∠ABO=30°,∠BAO=60°.由OB=12,∴AB=8,AO=4

∵△PON是等邊三角形,∴∠PON=60°.∴∠AOP=60°.∴AO=2AP,即4=2t.解得t=2.∴當(dāng)t=2時(shí),點(diǎn)M與點(diǎn)O重合.

2.(2)如圖②,過(guò)P分別作PQ⊥OA于點(diǎn)Q,PS⊥OB于點(diǎn)S.

可求得AQ=AP=,PS=QO=4

∴點(diǎn)P坐標(biāo)為(,4).       ………………6分

在Rt△PMS中,sin60°=

∴PM=(4)÷=8-t.

3.(3)(Ⅰ)當(dāng)0≤t≤1時(shí),見(jiàn)圖③.

設(shè)PN交EF于點(diǎn)G,則重疊部分為直角梯形FONG,作GH⊥OB于點(diǎn)H.

∵∠GNH=60°,GH=2,∴HN=2.∵M(jìn)P=8-t,∴BM=2MP=16-2t.

∴OM=BM-OB=16-2t-12=4-2t.∴ON=MN-OM=8-t-(4-2t)=4+t.

∴FG=OH=ON-HN=4+t-2=2+t. ∴S=(2+t+4+t)×2=2t+6

∵S隨t的增大而增大,∴當(dāng)t=1時(shí),S最大=8.…10分

(Ⅱ)當(dāng)1<t≤2時(shí),見(jiàn)圖④.設(shè)PM交EF于點(diǎn)I,交FO于點(diǎn)Q,PN交EF于點(diǎn)G.

重疊部分為五邊形OQIGN.

OQ=4-2t,F(xiàn)Q=2-(4-2t)= 2t-2,

FI=FQ=2t-2.

∴三角形QFP的面積=(2t-2)(2t-2)=2(t2-2t+1).

由(Ⅰ)可知梯形OFGN的面積=2t+6,

∴S=2t+6-2(t2-2t+1)=-2(t2-3t-2).

∵-2<0,∴當(dāng)t=時(shí),S有最大值,S最大=

綜上所述:當(dāng)0≤t≤1時(shí),S=2t+6;當(dāng)1<t≤2時(shí),S=-2t2+6t+4;

>8,∴S的最大值是

            

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫(huà)兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫(huà)成水平,叫x軸,另一條畫(huà)成鉛垂,叫y軸,這樣,我們就說(shuō)在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫(huà)出平移后的△A′B′C′;
(2)請(qǐng)寫(xiě)出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點(diǎn)C的坐標(biāo)為(-3,0).
(1)點(diǎn)A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點(diǎn)B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點(diǎn)O為頂點(diǎn)且過(guò)點(diǎn)A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時(shí)間為多少秒時(shí),三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步輕松練習(xí) 八年級(jí) 數(shù)學(xué) 上 題型:059

學(xué)校閱覽室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2張方桌拼成一行能坐6人(如圖)

(1)按照這種規(guī)定填寫(xiě)下表:

(2)根據(jù)表中的數(shù)據(jù),將s作為縱坐標(biāo),n作為橫坐標(biāo),在如圖所示的平面直角坐標(biāo)系中找出相應(yīng)各點(diǎn).

(3)請(qǐng)你猜一猜上述各點(diǎn)會(huì)在某一個(gè)函數(shù)圖象上嗎?如果在某一函數(shù)圖象上,求出該函數(shù)的解析式,并利用你探求的結(jié)果,求出當(dāng)n=10時(shí),s的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年北京海淀區(qū)九年級(jí)第一學(xué)期期中測(cè)評(píng)數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面的材料:

小明在研究中心對(duì)稱問(wèn)題時(shí)發(fā)現(xiàn):

如圖1,當(dāng)點(diǎn)為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)再繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),這時(shí)點(diǎn)與點(diǎn)重合.

如圖2,當(dāng)點(diǎn)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn),小明發(fā)現(xiàn)P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱.

(1)請(qǐng)?jiān)趫D2中畫(huà)出點(diǎn)、, 小明在證明P、兩點(diǎn)關(guān)于點(diǎn)中心對(duì)稱時(shí),除了說(shuō)明P、、三點(diǎn)共線之外,還需證明;

(2)如圖3,在平面直角坐標(biāo)系xOy中,當(dāng)、為旋轉(zhuǎn)中心時(shí),點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn);點(diǎn)繞著點(diǎn)旋轉(zhuǎn)180°得到點(diǎn). 繼續(xù)如此操作若干次得到點(diǎn),則點(diǎn)的坐標(biāo)為(),點(diǎn)的坐為.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫(huà)兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫(huà)成水平,叫x軸,另一條畫(huà)成鉛垂,叫y軸,這樣,我們就說(shuō)在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國(guó)數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(duì)(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請(qǐng)把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫(huà)出平移后的△A′B′C′;
(2)請(qǐng)寫(xiě)出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊(cè)答案