(12分)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(0,2),點(diǎn)B(-2,0),過點(diǎn)B和線段OA的中點(diǎn)C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點(diǎn)D的坐標(biāo)為????????? ,點(diǎn)E的坐標(biāo)為?????????? ;
(2)若拋物線y=aa2+ba+c(a≠0)經(jīng)過A,D,E三點(diǎn),求該拋物線的解析式;
(3)若正方形和拋物線均以每秒個單位長度的速度沿射線BC同時向上平移,直至正方形的頂點(diǎn)E落在y軸上時,正方形和拋物線均停止運(yùn)動.
① 在運(yùn)動過程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時間t(秒)的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
② 運(yùn)動停止時,請直接寫出此時的拋物線的頂點(diǎn)坐標(biāo).
(1)D(﹣1,3)、E(﹣3,2);
(2);
(3)①S與x的函數(shù)關(guān)系式為:當(dāng)0<t≤時,S=5t2,當(dāng)<t≤1時,S=5t﹣,當(dāng)1<t≤時,S=﹣5t2+15t﹣;②運(yùn)動停止時,拋物線的頂點(diǎn)坐標(biāo)為(,).
【解析】
試題分析:(1)構(gòu)造全等三角形,由全等三角形對應(yīng)線段之間的相等關(guān)系,求出點(diǎn)D、點(diǎn)E的坐標(biāo);
(2)利用待定系數(shù)法求出拋物線的解析式;
(3)本問非常復(fù)雜,須小心思考與計(jì)算:
①為求s的表達(dá)式,需要識別正方形(與拋物線)的運(yùn)動過程.正方形的平移,從開始到結(jié)束,總共歷時秒,期間可以劃分成三個階段:當(dāng)0<t≤時,對應(yīng)圖(3)a;當(dāng)<t≤1時,對應(yīng)圖(3)b;當(dāng)1<t≤時,對應(yīng)圖(3)c.每個階段的表達(dá)式不同,請對照圖形認(rèn)真思考;
②當(dāng)運(yùn)動停止時,點(diǎn)E到達(dá)y軸,點(diǎn)E(﹣3,2)運(yùn)動到點(diǎn)E′(0,),可知整條拋物線向右平移了3個單位,向上平移了個單位.由此得到平移之后的拋物線解析式,進(jìn)而求出其頂點(diǎn)坐標(biāo).
試題解析:(1)由題意可知:OB=2,OC=1.
如圖(1)所示,過D點(diǎn)作DH⊥y軸于H,過E點(diǎn)作EG⊥x軸于G.
易證△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3);
同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2).
∴D(﹣1,3)、E(﹣3,2);
(2)拋物線經(jīng)過(0,2)、(﹣1,3)、(﹣3,2),
則,解得 ,
∴;
(3)①當(dāng)點(diǎn)D運(yùn)動到y軸上時,t=.
當(dāng)0<t≤時,如圖(3)a所示.
設(shè)D′C′交y軸于點(diǎn)F
∵tan∠BCO==2,又∵∠BCO=∠FCC′
∴tan∠FCC′=2,即=2
∵CC′=t,∴FC′=2t.
∴S△CC′F=CC′•FC′=t×t=5t2
當(dāng)點(diǎn)B運(yùn)動到點(diǎn)C時,t=1.
當(dāng)<t≤1時,如圖(3)b所示.
設(shè)D′E′交y軸于點(diǎn)G,過G作GH⊥B′C′于H.
在Rt△BOC中,BC=
∴GH=,∴CH=GH=
∵CC′=t,∴HC′=t﹣,∴GD′=t﹣
∴S梯形CC′D′G=(t﹣+t)=5t﹣
當(dāng)點(diǎn)E運(yùn)動到y軸上時,t=.
當(dāng)1<t≤時,如圖(3)c所示
設(shè)D′E′、E′B′分別交y軸于點(diǎn)M、N
∵CC′=t,B′C′=,
∴CB′=t﹣,∴B′N=2CB′=t﹣
∵B′E′=,∴E′N=B′E′﹣B′N=﹣t
∴E′M=E′N=(﹣t)
∴S△MNE′=(﹣t)•(﹣t)=5t2﹣15t+
∴S五邊形B′C′D′MN=S正方形B′C′D′E′﹣S△MNE′=﹣(5t2﹣15t+)=﹣5t2+15t﹣
綜上所述,S與x的函數(shù)關(guān)系式為:
當(dāng)0<t≤時,S=5t2,
當(dāng)<t≤1時,S=5t﹣,
當(dāng)1<t≤時,S=﹣5t2+15t﹣;
②當(dāng)點(diǎn)E運(yùn)動到點(diǎn)E′時,運(yùn)動停止.如圖(3)d所示
∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′
∴△BOC∽△E′B′C
∴
∵OB=2,B′E′=BC=
∴
∴CE′=
∴OE′=OC+CE′=1+=
∴E′(0,)
由點(diǎn)E(﹣3,2)運(yùn)動到點(diǎn)E′(0,),可知整條拋物線向右平移了3個單位,向上平移了個單位.
∵
∴原拋物線頂點(diǎn)坐標(biāo)為(,)
∴運(yùn)動停止時,拋物線的頂點(diǎn)坐標(biāo)為(,).
考點(diǎn):二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
PP′ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 |
x |
3 |
2 |
6 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com