精英家教網 > 初中數學 > 題目詳情

多項式x2+mx+15可以在整數范圍內進行分解,則m=  (寫出其中一個)

 

【答案】

8

【解析】

試題分析:把15分成3和5,即原式分解為(x+3)(x+5),即可得到答案.

解:當m=8時,x2+mx+15=(x+3)(x+5),

故答案為:8.

考點:因式分解-十字相乘法等.

點評:本題主要考查對因式分解﹣十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此題的關鍵.

 

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•株洲)多項式x2+mx+5因式分解得(x+5)(x+n),則m=
6
6
,n=
1
1

查看答案和解析>>

科目:初中數學 來源: 題型:

若多項式x2+mx+9是一個完全平方式,則m是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如果多項式x2+mx+16=(x+4)2,那么m的值為
8
8

查看答案和解析>>

科目:初中數學 來源: 題型:

若多項式x2-mx+4可分解為(x-2)(x+n),求m•n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果多項式x2+mx-6在整數范圍內可以因式分解,那么m可以取的值是
±1或±5
±1或±5
(寫出一個即可).

查看答案和解析>>

同步練習冊答案