【題目】已知拋物線與軸交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)求點(diǎn),點(diǎn)的坐標(biāo);
(2)我們規(guī)定:對(duì)于直線,直線,若,則直線;反過(guò)來(lái)也成立.請(qǐng)根據(jù)這個(gè)規(guī)定解決下列問(wèn)題:
①直線與直線是否垂直?并說(shuō)明理由;
②若點(diǎn)是拋物線的對(duì)稱軸上一動(dòng)點(diǎn),是否存在點(diǎn)與點(diǎn),點(diǎn)構(gòu)成以為直角邊的直角三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為;(2) ①不垂直,理由詳見(jiàn)解析;②存在,點(diǎn)的坐標(biāo)為或.
【解析】
(1)令,求出x的值,根據(jù)點(diǎn)在點(diǎn)的左側(cè)求出A的坐標(biāo),令,求出y的值即可求出C的坐標(biāo);
(2)①分別求出兩條直線的斜率,然后根據(jù)兩斜率的積不等于-1即可證明兩直線不垂直;②根據(jù)點(diǎn),點(diǎn)的坐標(biāo)求出直線AC的函數(shù)表達(dá)式,然后對(duì)時(shí)與時(shí)兩種情況分別討論計(jì)算即可.
解:
(1)當(dāng)時(shí),,解得,
∵點(diǎn)在點(diǎn)的左側(cè),
∴點(diǎn)坐標(biāo)為
當(dāng)時(shí),
∴點(diǎn)坐標(biāo)為.
(2)①不垂直;由,得,由,得
∵
∴直線與直線不垂直;
②存在.
∵
∴拋物線的對(duì)稱軸為直線.
設(shè)直線,根據(jù)題意得,解得
∴直線的函數(shù)表達(dá)式為
分兩種情況:Ⅰ)當(dāng)時(shí),如圖,根據(jù)新定義可設(shè)
∵點(diǎn)坐標(biāo)為
∴
∴
直線的函數(shù)表達(dá)式為,當(dāng)時(shí),
此時(shí)點(diǎn)坐標(biāo)為;
Ⅱ)當(dāng)時(shí),如圖,根據(jù)新定義可設(shè)
∵點(diǎn)坐標(biāo)為
∴,
∴直線的函數(shù)表達(dá)式為,當(dāng)時(shí),,
此時(shí)點(diǎn)坐標(biāo)為;
綜上,點(diǎn)的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù),它與軸交于、,且、位于原點(diǎn)兩側(cè),與的正半軸交于,頂點(diǎn)在軸右側(cè)的直線:上,則下列說(shuō)法:① ② ③ ④其中正確的結(jié)論有( )
A.①②B.②③C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若此方程的一個(gè)根為1,求的值;
(2)求證:不論取何實(shí)數(shù),此方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華是數(shù)學(xué)興趣小組的一名成員,他在學(xué)過(guò)二次函數(shù)的圖像與性質(zhì)之后,對(duì)的圖像與性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)你補(bǔ)充完整.
(1)小剛通過(guò)計(jì)算得到幾組對(duì)應(yīng)的數(shù)值如下
… | 0 | 1 | 2 | 3 | 4 | 5 | … | ||||||||
… | 0 | 4 | 6 | 6 | 4 | 6 | 6 | 4 | 0 | … |
填空:自變量的取值范圍是__________________,__________.
(2)在如圖所示的平面直角坐標(biāo)系中,描出上表中各組對(duì)應(yīng)數(shù)值的點(diǎn),并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖像.
(3)請(qǐng)你根據(jù)畫(huà)出的圖像,寫(xiě)出此函數(shù)的兩條性質(zhì);
①__________________________________________;
②__________________________________________.
(4)直線經(jīng)過(guò),若關(guān)于的方程有4個(gè)不相等的實(shí)數(shù)根,則的取值范圍為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:一元二次方程ax2+bx+C=0(a≠0),當(dāng)△≥0時(shí),設(shè)兩根為x1,x2,則兩根與系數(shù)的關(guān)系為:x1+x2=;x1x2=.
應(yīng)用:(1)方程x2﹣2x+1=0的兩實(shí)數(shù)根分別為x1,x2,則x1+x2= ,x1x2= .
(2)若關(guān)于x的方程x2﹣2(m+1)x+m2=0的有兩個(gè)實(shí)數(shù)根x1,x2,求m的取值范圍;
(3)在(2)的條件下,若滿足|x1|=x2,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片,是的中點(diǎn),是上一動(dòng)點(diǎn),沿折疊,點(diǎn)落在點(diǎn)處;延長(zhǎng)交于點(diǎn),連接.
(1)求證:≌;
(2)當(dāng)時(shí),將沿折疊,點(diǎn)落在線段上點(diǎn)處.
①求證:∽;
②如果,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分別交直線AB、AC于點(diǎn)M、N.
(1)如圖1,當(dāng)α=90°時(shí),求證:AM=CN;
(2)如圖2,當(dāng)α=45°時(shí),問(wèn)線段BM、MN、AN之間有何數(shù)量關(guān)系,并證明;
(3)如圖3,當(dāng)α=45°時(shí),旋轉(zhuǎn)∠MON,問(wèn)線段之間BM、MN、AN有何數(shù)量關(guān)系?并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】表中所列 的7對(duì)值是二次函數(shù) 圖象上的點(diǎn)所對(duì)應(yīng)的坐標(biāo),其中
x | … | … | |||||||
y | … | 7 | m | 14 | k | 14 | m | 7 | … |
根據(jù)表中提供的信息,有以下4 個(gè)判斷:
① ;② ;③ 當(dāng)時(shí),y 的值是 k;④ 其中判斷正確的是 ( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)E為AB上一點(diǎn),AE=2,點(diǎn)F在AD上,將△AEF沿EF折疊,當(dāng)折疊后點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在BC的垂直平分線上時(shí),折痕EF的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com