21、某商人將進價為每件8元的某種商品按每件10元出售,每天可銷出100件.他想采用提高售價的辦法來增加利潤.經(jīng)試驗,發(fā)現(xiàn)這種商品每件每提價1元,每天的銷售量就會減少10件.
(1)請寫出售價x(元/件)與每天所得的利潤y(元)之間的函數(shù)關(guān)系式;
(2)每件售價定為多少元,才能使一天的利潤最大?
分析:(1)題中等量關(guān)系為:利潤=(售價-進價)×售出件數(shù),根據(jù)等量關(guān)系列出函數(shù)關(guān)系式;
(2)將(1)中的函數(shù)關(guān)系式配方,根據(jù)配方后的方程式即可求出y的最大值.
解答:解:(1)根據(jù)題中等量關(guān)系為:利潤=(售價-進價)×售出件數(shù),
列出方程式為:y=(x-8)[100-10(x-10)],
即y=-10x2+280x-1600;

(2)將(1)中方程式配方得:
y=-10(x-14)2+360,
∴當x=14時,y最大=360元,
答:售價為14元時,利潤最大.
點評:本題主要考查對與一次函數(shù)的應(yīng)用,要注意找好題中的等量關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

17、某商人將進價為每件8元的某種商品按每件10元出售,每天可銷出100件,經(jīng)試驗,把這種商品每件每提價1元,每天的銷售量就會減少10件,則每天所得的利潤y(元)與售價x(元/件)之間的函數(shù)關(guān)系式為:
y=-10x2+280x-1600

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某商人將進價為每件8元的某種商品按每件10元出售,每天可銷出100件.他想采用提高售價的辦法來增加利潤.經(jīng)試驗,發(fā)現(xiàn)這種商品每件每提價1元,每天的銷售量就會減少10件.
(1)請寫出售價x(元/件)與每天所得的利潤y(元)之間的函數(shù)關(guān)系式;
(2)每件售價定為多少元,才能使一天的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商人將進價為每件8元的某種商品按每件10元出售,每天可銷出100件.他想采用提高售價的辦法來增加利潤.經(jīng)試驗,發(fā)現(xiàn)這種商品每件每提價1元,每天的銷售量就會減少10件.
(1)請寫出售價x(元/件)與每天所得的利潤y(元)之間的函數(shù)關(guān)系式;
(2)每件售價定為多少元,才能使一天的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年福建省廈門市上塘中學九年級(上)期中數(shù)學試卷(解析版) 題型:填空題

某商人將進價為每件8元的某種商品按每件10元出售,每天可銷出100件,經(jīng)試驗,把這種商品每件每提價1元,每天的銷售量就會減少10件,則每天所得的利潤y(元)與售價x(元/件)之間的函數(shù)關(guān)系式為:   

查看答案和解析>>

同步練習冊答案