在二元一次方程組
2x+y=1-a
x-2y=4+3a
中,a與方程組的解中的x或y的值相等,則a的值為
3
2
或-
7
12
3
2
或-
7
12
分析:分別討論,①當a=x時,②當a=y時,分別整理方程組,解出即可得出答案.
解答:解:①若a=x,
則可得:
3x+y=1
2x+2y=-4
,
解得:
x=
3
2
y=-
7
2

則此時a=
3
2
;
②當a=y時,
則可得:
2x+2y=1
x-5y=4
,
解得:
x=
13
12
y=-
7
12
,
則此時a=-
7
12

故答案為:
3
2
或-
7
12
點評:本題考查了二元一次方程組的解,解答本題的關(guān)鍵是分類討論,注意消元法求解方程組的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在下列各對數(shù)中,是二元一次方程組
2x+3y=6
2x+y=6
的解是( 。
A、
x=0
y=2
B、
x=0
y=6
C、
x=
1
4
y=
11
2
D、
x=3
y=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個,而在實際問題中我們往往只需要求出其正整數(shù)解.下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x
∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x為正整數(shù),則
2
3
x為正整數(shù),所以x為3的倍數(shù).
又因為0<x<6,從而x=3,代入:y=4-
2
3
×3=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

解決問題:
(1)九年級某班為了獎勵學習進步的學生,花費35元購買了筆記本和鋼筆兩種獎品,其中筆記本的單價為3元/本,鋼筆單價為5元/支,問有幾種購買方案?
(2)試求方程組
2x+y+z=10
3x+y-z=12
的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,然后解答后面的問題:
我們知道二元一次方程組
2x+3y=12
3x-3y=6
的求解方法是消元法,即可將它化為一元一次方程來解,可求得方程組
2x+3y=12
3x-3y=6
有唯一解.
我們也知道二元一次方程2x+3y=12的解有無數(shù)個,而在實際問題中我們往往只需要求出其正整數(shù)解.
下面是求二元一次方程2x+3y=12的正整數(shù)解的過程:
由2x+3y=12得:y=
12-2x
3
=4-
2
3
x

∵x、y為正整數(shù),∴
x>0
12-2x>0
則有0<x<6
又y=4-
2
3
x
為正整數(shù),則
2
3
x
為正整數(shù),所以x為3的倍數(shù)
又因為0<x<6,從而x=3,代入:y=4-
2
3
×3
=2
∴2x+3y=12的正整數(shù)解為
x=3
y=2

問題:(1)若 
6
x-2
為正整數(shù),則滿足條件的x的值有幾個.( 。
A、2    B、3    C、4   D、5
      (2)九年級某班為了獎勵學習進步的學生,花費35元購買了筆記本和鋼筆兩種獎品,其中筆記本的單價為3元/本,鋼筆單價為5元/支,問有幾種購買方案?
      (3)試求方程組
2x+y+z=10
3x+y-z=12
 的正整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•武侯區(qū)一模)(1)解不等式組:
6x+15>2(4x+3)
2x-1
3
1
2
x-
2
3
,并指出此不等式組的非正整數(shù)解.
(2)先化簡,再求值:
2x
4-x2
÷(
3x
x-2
-
x
x+2
)
,其中x=tan60°-3.
(3)如圖,在△ABC中,∠C=90°,AC=4,∠CAB的平分線AD=
8
3
3
,求∠B的度數(shù)及邊BC的長.
(4)若關(guān)于x、y二元一次方程組
2x+3y=k-3
x-2y=2k+1
的解中x與y互為相反數(shù),求k的值.

查看答案和解析>>

同步練習冊答案