【答案】
分析:(1)由于兩個(gè)拋物線同時(shí)經(jīng)過A、B兩點(diǎn),將A點(diǎn)坐標(biāo)代入兩個(gè)拋物線中,即可求得待定系數(shù)的值,進(jìn)而可求出B點(diǎn)的坐標(biāo).
(2)①已知了點(diǎn)D的坐標(biāo),即可求得正△DGH的邊長(zhǎng),過G作GE⊥DH于E,易求得DE、EH、EG的長(zhǎng);根據(jù)(1)題所求得的C
2的解析式,即可求出點(diǎn)M的坐標(biāo),也就能得到ME、MH的長(zhǎng),易證△MEG∽△MHN,根據(jù)相似三角形所得比例線段,即可求得N點(diǎn)的橫坐標(biāo).
②求點(diǎn)N橫坐標(biāo)的取值范圍,需考慮N點(diǎn)橫坐標(biāo)最大、最小兩種情況:
①當(dāng)點(diǎn)D、A重合,且直線l經(jīng)過點(diǎn)G時(shí),N點(diǎn)的橫坐標(biāo)最大;解法可參照(2)的思路,過點(diǎn)G作GQ⊥x軸于Q,過點(diǎn)M作MF⊥x軸于F,設(shè)出點(diǎn)N的橫坐標(biāo),然后分別表示出NQ、NF的長(zhǎng),通過證△NQG∽△NFM,根據(jù)所得比例線段,即可求得此時(shí)N點(diǎn)的橫坐標(biāo);
②當(dāng)點(diǎn)D、B重合,直線l過點(diǎn)D時(shí),N點(diǎn)的橫坐標(biāo)最小,解法同①.
解答:解:(1)∵點(diǎn)A(2,4)在拋物線C
1上,
∴把點(diǎn)A坐標(biāo)代入y=a(x+1)
2-5得a=1,
∴拋物線C
1的解析式為y=x
2+2x-4,
設(shè)B(-2,b),
∴b=-4,
∴B(-2,-4);
(2)①如圖
∵M(jìn)(1,5),D(1,2),且DH⊥x軸,
∴點(diǎn)M在DH上,MH=5,
過點(diǎn)G作GE⊥DH,垂足為E,
由△DHG是正三角形,可得EG=
,EH=1,
∴ME=4,
設(shè)N(x,0),則NH=x-1,
由△MEG∽△MHN,得
,
∴
,
∴x=
,
∴點(diǎn)N的橫坐標(biāo)為
;
②當(dāng)點(diǎn)D移到與點(diǎn)A重合時(shí),如圖,
直線l與DG交于點(diǎn)G,此時(shí)點(diǎn)N的橫坐標(biāo)最大;
過點(diǎn)G,M作x軸的垂線,垂足分別為點(diǎn)Q,F(xiàn),
設(shè)N(x,0),
∵A(2,4),即AH=4,且△AGH為等邊三角形,
∴∠AHG=60°,HG=AH=4,
∴∠GHQ=30°,又∠GQH=90°,
∴GQ=
HG=2,HQ=
=2
,
∴OQ=OH+HQ=2+2
,
∴G(
,2),
∴NQ=
,NF=x-1,GQ=2,MF=5,
∵△NGQ∽△NMF,
∴
,
∴
,
∴
,
當(dāng)點(diǎn)D移到與點(diǎn)B重合時(shí),如圖:
直線l與DG交于點(diǎn)D,即點(diǎn)B,
此時(shí)點(diǎn)N的橫坐標(biāo)最小;
∵B(-2,-4),
∴H(-2,0),D(-2,-4),
設(shè)N(x,0),
∵△BHN∽△MFN,
∴
,
∴
,
∴
,
∴點(diǎn)N橫坐標(biāo)的范圍為
≤x≤
且x≠0.
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,主要考查二次函數(shù)解析式的確定、等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì);在解答(2)題時(shí),關(guān)鍵是正確地作圖,構(gòu)造出與所求相關(guān)的相似三角形,然后利用相似三角形的性質(zhì)來求解.