精英家教網 > 初中數學 > 題目詳情
已知:二次函數y=x2-2(m-1)x+m2-2m-3,其中m為實數.
(1)求證:不論m取何實數,這個二次函數的圖象與x軸必有兩個交點;
(2)設這個二次函數的圖象與x軸交于點A(x1,0)、B(x2,0),且x1、x2的倒數和為,求這個二次函數的解析式.
【答案】分析:判斷二次函數y=x2-2(m-1)x+m2-2m-3與x軸的交點情況,需要把問題轉化為求方程x2-2(m-1)x+m2-2m-3=0的判別式的符號.而已知二次函數的圖象與x軸交于點A(x1,0)、B(x2,0),相當于已知此方程兩根為x1,x2.可運用根與系數的關系解題,所求m的值不受限制,結果有兩個.
解答:解:(1)∵△=b2-4ac=[-2(m-1)]2-4(m2-2m-3)=4m2-8m+4-4m2+8m+12=16>0,
∴不論m取何實數,這個二次函數的圖象與x軸必有兩個交點;

(2)∵x1+x2=2(m-1),x1x2=m2-2m-3,
=,
==,
解得m=0或5,
二次函數解析式為:y=x2+2x-3或y=x2-8x+12.
點評:主要考查了二次函數圖象的性質與一元二次方程根的情況之間的關系,以及根與系數的關系的運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:二次函數的表達式為y=2x2+4x-1.
(1)設這個函數圖象的頂點坐標為P,與y軸的交點為A,求P、A兩點的坐標;
(2)將二次函數的圖象向上平移1個單位,設平移后的圖象與x軸的交點為B、C(其中點B在點C的左側),求B、C兩點的坐標及tan∠APB的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:二次函數y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標是(-2,0),點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OC<OB)是方程x2-10x+24=0的兩個根.
(1)求B、C兩點的坐標;
(2)求這個二次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:二次函數y=x2-2(m-1)x-1-m的圖象與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點C,且滿足
1
AO
-
1
OB
=
2
CO

(1)求這個二次函數的解析式;
(2)是否存在著直線y=kx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k、b應滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:二次函數y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(-3,0),與y軸精英家教網交于點C,點D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:二次函數y=ax2+bx+c(a≠0)中的x和y滿足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值為
3
3
;
(2)求出這個二次函數的解析式;
(3)當0<x<3時,則y的取值范圍為
-1≤y<3
-1≤y<3

查看答案和解析>>

同步練習冊答案