如圖所示,在梯形ABCD中,已知ABCD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線為x軸,過(guò)D且垂直于AB的直線為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、D、C三點(diǎn)的拋物線的解析式及其對(duì)稱軸L;
(3)若P是拋物線的對(duì)稱軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)P有幾個(gè)?(不必求點(diǎn)P的坐標(biāo),只需說(shuō)明理由)
(1)∵DCAB,AD=DC=CB,
∴∠CDB=∠CBD=∠DBA (5分)
∠DAB=∠CBA,
∴∠DAB=2∠DBA,(1分
∠DAB+∠DBA=90°,
∴∠DAB=60°(5分)
∠DBA=30°,
∵AB=4,
∴DC=AD=2,(2分)
Rt△AOD,OA=1,OD=
3
,AD=2.(5分)
∴A(-1,0),D(0,
3
),C(2,
3
).(4分)

(2)根據(jù)拋物線和等腰梯形的對(duì)稱性知,滿足條件的拋物線必過(guò)點(diǎn)A(-1,0),B(3,0),
故可設(shè)所求為y=a(x+1)(x-3)(6分)
將點(diǎn)D(0,
3
)的坐標(biāo)代入上式得,a=-
3
3

所求拋物線的解析式為y=-
3
3
(x+1)(x-3),(7分)
其對(duì)稱軸L為直線x=1.(8分)

(3)△PDB為等腰三角形,有以下三種情況:
①因直線L與DB不平行,DB的垂直平分線與L僅有一個(gè)交點(diǎn)P1,P1D=P1B,
△P1DB為等腰三角形;(9分)
②因?yàn)橐訢為圓心,DB為半徑的圓與直線L有兩個(gè)交點(diǎn)P2、P3,DB=DP2,DB=DP3,△P2DB,△P3DB為等腰三角形;
③與②同理,L上也有兩個(gè)點(diǎn)P4、P5,使得BD=BP4,BD=BP5.(10分)
由于以上各點(diǎn)互不重合,所以在直線L上,使△PDB為等腰三角形的點(diǎn)P有5個(gè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=-x2+bx+3的圖象經(jīng)過(guò)點(diǎn)A(-1,0),頂點(diǎn)為P.
(1)求這個(gè)二次函數(shù)的解析式;
(2)頂點(diǎn)P的坐標(biāo)為_(kāi)_____;此拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo)為_(kāi)_____;
(3)若拋物線與y軸交于C點(diǎn),求△ABC的面積;
(4)在x軸上方的拋物線上是否存在一點(diǎn)D,使△ABD的面積等于△ABC的面積?若存在,請(qǐng)直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),拋物線交y軸于點(diǎn)C(0,3),點(diǎn)D為拋物線的頂點(diǎn).直線y=x-1交拋物線于點(diǎn)M、N兩點(diǎn),過(guò)線段MN上一點(diǎn)P作y軸的平行線交拋物線于點(diǎn)Q.
(1)求此拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)問(wèn)點(diǎn)P在何處時(shí),線段PQ最長(zhǎng),最長(zhǎng)為多少;
(3)設(shè)E為線段OC上的三等分點(diǎn),連接EP,EQ,若EP=EQ,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
11
4
時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無(wú)可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCO是平行四邊形,AB=4,OB=2,拋物線過(guò)A、B、C三點(diǎn),與x軸交于另一點(diǎn)D.一動(dòng)點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從B點(diǎn)出發(fā)沿BA向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到A停止,同時(shí)一動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿DC向點(diǎn)C運(yùn)動(dòng),與點(diǎn)P同時(shí)停止.
(1)求拋物線的解析式;
(2)若拋物線的對(duì)稱軸與AB交于點(diǎn)E,與x軸交于點(diǎn)F,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí)間t為何值時(shí),四邊形POQE是等腰梯形?
(3)當(dāng)t為何值時(shí),以P、B、O為頂點(diǎn)的三角形與以點(diǎn)Q、B、O為頂點(diǎn)的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)經(jīng)營(yíng)一批進(jìn)價(jià)為2元一件的小商品,在市場(chǎng)營(yíng)銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x元與日銷售量y件之間有如下關(guān)系:
x35911
y181462
(1)在直角坐標(biāo)系中
①根據(jù)表中提供的數(shù)據(jù)描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn);
②猜測(cè)并確定日銷售量y件與日銷售單價(jià)x元之間的函數(shù)關(guān)系式,并畫(huà)出圖象.并說(shuō)明當(dāng)x≥12時(shí)對(duì)應(yīng)圖象的實(shí)際意義.
(2)設(shè)經(jīng)營(yíng)此商品的日銷售利潤(rùn)(不考慮其他因素)為P元,根據(jù)日銷售規(guī)律:
①試求日銷售利潤(rùn)P元與日銷售單價(jià)x元之間的函數(shù)關(guān)系式;
②當(dāng)日銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn)?試問(wèn)日銷售利潤(rùn)P是否存在最小值?若有,試求出,并說(shuō)明其實(shí)際意義;若無(wú),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=0.下列判斷:
①當(dāng)x<0時(shí),y1>y2;
②當(dāng)x<0時(shí),x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是-
1
2
2
2

其中正確的是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司準(zhǔn)備投資開(kāi)發(fā)A、B兩種新產(chǎn)品,通過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn):
(1)若單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿足正比例函數(shù)關(guān)系:yA=kx;
(2)若單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬(wàn)元)與投資金額x(萬(wàn)元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.
(3)根據(jù)公司信息部的報(bào)告,yA,yB(萬(wàn)元)與投資金額x(萬(wàn)元)的部分對(duì)應(yīng)值如下表所示:
x15
yA0.84
yB3.815
(1)填空:yA=______;yB=______;
(2)若公司準(zhǔn)備投資20萬(wàn)元同時(shí)開(kāi)發(fā)A、B兩種新產(chǎn)品,設(shè)公司所獲得的總利潤(rùn)為W(萬(wàn)元),試寫(xiě)出W與某種產(chǎn)品的投資金額x(萬(wàn)元)之間的函數(shù)關(guān)系式;
(3)請(qǐng)你設(shè)計(jì)一個(gè)在(2)中能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在銳角△ABC中,BC=9,AH⊥BC于點(diǎn)H,且AH=6,點(diǎn)D為AB邊上的任意一點(diǎn),過(guò)點(diǎn)D作DEBC,交AC于點(diǎn)E.設(shè)△ADE的高AF為x(0<x<6),以DE為折線將△ADE翻折,所得的△A'DE與梯形DBCE重疊部分的面積記為y(點(diǎn)A關(guān)于DE的對(duì)稱點(diǎn)A'落在AH所在的直線上).
(1)分別求出當(dāng)0<x≤3與3<x<6時(shí),y與x的函數(shù)關(guān)系式;
(2)當(dāng)x取何值時(shí),y的值最大,最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案