【題目】如圖,△ABC中,AD⊥BC于點D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點F為線段BC上的任意一點,當△EFC為直角三角形時,求∠BEF的度數(shù).
【答案】(1)52°;(2)58°或20°
【解析】
試題分析:(1)由角平分線得出∠EBC,得出∠BAD=26°,再求出∠C,即可得出∠CAD=52°;
(2)分兩種情況:①當∠EFC=90°時;②當∠FEC=90°時;由角的互余關(guān)系和三角形的外角性質(zhì)即可求出∠BEF的度數(shù).
(1)證明:∵BE平分∠ABC,
∴∠ABC=2∠EBC=64°,
∴∠EBC=32°,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∴∠BAD=90°﹣64°=26°,
∵∠C=∠AEB﹣∠EBC=70°﹣32°=38°,
∴∠CAD=90°﹣38°=52°;
(2)解:分兩種情況:
①當∠EFC=90°時,如圖1所示:
則∠BFE=90°,
∴∠BEF=90°﹣∠EBC=90°﹣32°=58°;
②當∠FEC=90°時,如圖2所示:
則∠EFC=90°﹣38°=52°,
∴∠BEF=∠EFC﹣∠EBC=52°﹣32°=20°;
綜上所述:∠BEF的度數(shù)為58°或20°.
科目:初中數(shù)學 來源: 題型:
【題目】若等腰三角形的周長為10 cm,其中一邊長為2 cm,則該等腰三角形的底邊長為( )
A. 2 cm B. 4 cm C. 6 cm D. 8 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個圓柱形飲料罐,底面半徑為5cm,高為12cm,上底面中心有一個小圓孔,一條長為20cm可到達底部的直吸管在罐外部分a長度(罐壁厚度和小圓孔大小忽略不計)范圍是( )
A.8≤a≤15 B.5≤a≤8 C.7≤a≤8 D.7≤a≤15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店銷售一種內(nèi)衣,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x元/件的關(guān)系如表:
銷售單價x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y(件) | … | 450 | 400 | 300 | 250 | … |
(1)試求出y與x的之間的函數(shù)關(guān)系式;
(2)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)關(guān)系式,并確定當銷售單價的什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)服裝店決定將一周的銷售內(nèi)衣的利潤全部捐給福利院,在服裝店購進該內(nèi)衣的貸款不超過8000元情況下,請求出該服裝店最大捐款數(shù)額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線C1:y=a(x+1)2﹣4的頂點為C,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
(1)求點C的坐標及a 的值;
(2)如圖②,拋物線C2與C1關(guān)于x軸對稱,將拋物線C2向右平移4個單位,得到拋物線C3.C3與x軸交于點B、E,點P是直線CE上方拋物線C3上的一個動點,過點P作y軸的平行線,交CE于點F.
①求線段PF長的最大值;
②若PE=EF,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com