如圖,在⊙O中,弦AB與半徑OC相交于點(diǎn)M,且OM=MC,若AM=1.5,BM=4,則OC的長為


  1. A.
    2數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2數(shù)學(xué)公式
  4. D.
    2數(shù)學(xué)公式
D
分析:過C、O作直徑CD,用OC表示出DM、CM的長,然后運(yùn)用相交弦定理,列方程求解.
解答:解:如圖,延長CO,交⊙O于D,則CD為⊙O的直徑;
∵OM=MC,
∴OC=2MC=2OM,DM=3OM=3MC;
由相交弦定理得:DM•MC=AM•BM,
即:3MC2=1.5×4,解得MC=;
∴OC=2MC=2,故選D.
點(diǎn)評(píng):本題主要考查的是相交弦定理“圓內(nèi)兩弦相交于圓內(nèi)一點(diǎn),各弦被這點(diǎn)所分得的兩線段的長的乘積相等”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在⊙O中,弦AD=BC.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,在⊙O中,弦BC∥半徑OA,AC與OB相交于M,∠C=20°,則∠AMB的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙M中,弦AB所對(duì)的圓心角為120度,已知圓的半徑為2cm,并建立如圖所示的直角坐精英家教網(wǎng)標(biāo)系.
(1)求圓心M的坐標(biāo);
(2)求經(jīng)過A,B,C三點(diǎn)的拋物線的解析式;
(3)設(shè)點(diǎn)P是⊙M上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAB為Rt△PAB時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB=BC=CD,且∠ABC=140°,則∠AED=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,弦AB與CD相交于點(diǎn)P,連接AC、DB.
(1)求證:△PAC∽△PDB;
(2)當(dāng)
AC
DB
為何值時(shí),
S△PAC
S△PDB
=4?

查看答案和解析>>

同步練習(xí)冊(cè)答案