(2000•陜西)如圖,要測(cè)量小山上電視塔BC的高度,從山腳下A點(diǎn)測(cè)得AC=820m,塔頂B的仰角α=30°,山坡的傾角β=18°,求電視塔的高(精確到1m).
(參考數(shù)據(jù):sin30°=0.50,cos30°=0.87,tan30°=0.58,cot30°=1.73,sin18°=0.31,cos18°=0.95,tan18°=0.32,cot18°=3.08)

【答案】分析:在Rt△ACD中,已知了仰角∠CAD(即β)的度數(shù)及斜邊AC的長,可通過解直角三角形求得AD、CD的長;進(jìn)而可根據(jù)AD的長及仰角∠BAD(即α)的度數(shù)在Rt△ABD中求得BD的長,由BC=BD-CD即可求得電視塔BC的高度.
解答:解:Rt△ACD中,∠CAD=β=18°,AC=820m,則有:
CD=AC•sinβ=AC•sin18°=820×0.31=254.2;(2分)
AD=AC•cosβ=AC•cos18°=820×0.95=779;(4分)
Rt△ABD中,∠BAD=30°,AD=779m,則有:
BD=AD•tanα=AD•tan30°=779×0.58=451.8;(7分)
∴BC=BD-CD=197.6≈198(m).
答:電視塔高為198m.(9分)
點(diǎn)評(píng):本題考查仰角的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.當(dāng)兩個(gè)直角三角形有公共邊時(shí),先求出這條公共邊是解答此類題目的基本出發(fā)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年陜西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•陜西)如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過C點(diǎn)作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點(diǎn)恰為⊙A與x軸的兩個(gè)交點(diǎn),且拋物線的頂點(diǎn)在直線上y=x+2上,求此拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2000•陜西)如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過C點(diǎn)作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點(diǎn)恰為⊙A與x軸的兩個(gè)交點(diǎn),且拋物線的頂點(diǎn)在直線上y=x+2上,求此拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(2000•陜西)如圖,已知弦AB等于半徑,連接OB并延長使BC=OB.
(1)求證:AC是⊙O的切線;
(2)請(qǐng)你在⊙O上選取一點(diǎn)D,使得AD=AC.(自己完成作圖,并給出證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《四邊形》(02)(解析版) 題型:解答題

(2000•陜西)如圖,在矩形ABCD中,EF是BD的垂直平分線,已知BD=20,EF=15,求矩形ABCD的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案