如圖,已知點(diǎn)A (2,4) 和點(diǎn)B (1,0)都在拋物線上.
(1)求m、n;
(2)向右平移上述拋物線,記平移后點(diǎn)A的對應(yīng)點(diǎn)為A′,點(diǎn)B的對應(yīng)點(diǎn)為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達(dá)式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點(diǎn)為C,試在x軸上找一個點(diǎn)D,使得以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似.
(1),4;(2);(3)D(3,0)或(,0).
【解析】
試題分析:(1)已知了拋物線圖象上A、B兩點(diǎn)的坐標(biāo),將它們代入拋物線的解析式中,即可求得m、n的值;(2)根據(jù)A、B的坐標(biāo),易求得AB的長;根據(jù)平移的性質(zhì)知:四邊形A A′B′B一定為平行四邊形,若四邊形A A′B′B為菱形,那么必須滿足AB=BB′,由此可確定平移的距離,根據(jù)“左加右減”的平移規(guī)律即可求得平移后的拋物線解析式;(3)易求得直線AB′的解析式,聯(lián)立平移后的拋物線對稱軸,可得到C點(diǎn)的坐標(biāo),進(jìn)而可求出AB、BC、AC、B′C的長,在(2)題中已經(jīng)證得AB=BB′,那么∠BAC=∠BB′C,即A、B′對應(yīng),若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,可分兩種情況考慮:①∠B′CD=∠ABC,此時△B′CD∽△ABC,②∠B′DC=∠ABC,此時△B′DC∽△ABC,根據(jù)上述兩種不同的相似三角形所得不同的比例線段,即可求得不同的BD長,進(jìn)而可求得D點(diǎn)的坐標(biāo).
試題解析:(1)由于拋物線經(jīng)過A (2,4)和點(diǎn)B (1,0),則有:
,解得.
(2)由(1)得:,
由A (2,4)、B (1,0),根據(jù)勾股定理可得,
若四邊形A A′B′B為菱形,則AB=BB′=5,即B′(6,0).
故拋物線需向右平移5個單位,即:.
(3)由(2)得:平移后拋物線的對稱軸為:x=4,
∵A(2,4),B′(6,0),∴直線AB′:.
當(dāng)x=4時,y=1,故C(4,1). ∴AC=3,B′C=,BC=.
由(2)知:AB=BB′=5,即∠BAC=∠BB′C.
若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,則:
①∠B′CD=∠ABC,則△B′CD∽△ABC,可得:,即,∴B′D=3,此時D(3,0);②∠B′DC=∠ABC,則△B′DC∽△ABC,可得:即,∴,此時D(,0).
綜上所述,存在符合條件的D點(diǎn),且坐標(biāo)為:D(3,0)或(,0).
考點(diǎn):1.二次函數(shù)綜合題;2.平移問題;3.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;4.勾股定理;5. 菱形的性質(zhì);6.等腰三角形的性質(zhì);7.相似三角形的判定和性質(zhì);8.分類思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、2
| ||||
D、4
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
BA |
a |
BC |
b |
BD |
a |
b |
a |
b |
BD |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
2 | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com