如圖,已知四邊形ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E、B、C、F都在以O(shè)為圓心的同一圓弧上,且∠ADE=∠CDF,那么數(shù)學(xué)公式的長(zhǎng)度等于________.(結(jié)果保留π)


分析:B,C兩點(diǎn)恰好落在扇形AEF的上,即B、C在同一個(gè)圓上,連接AC,易證△BDC是等邊三角形,即可求得的圓心角的度數(shù),根據(jù)∠ADE=∠CDF可知∠ADC=∠EDF,即可證明的長(zhǎng)=2,然后利用弧長(zhǎng)公式即可求解.
解答:連接BD,
∵菱形ABCD中,DC=BC,
又∵BD=DC,
∴BD=DC=BC,即△DBC是等邊三角形.
∴∠BDC=60°,
==,
∵∠ADE=∠CDF,
∴∠ADC=∠EDF,
∵∠ADC=2∠BDC,
∴∠EDF=2∠BDC,
=2=2×=
點(diǎn)評(píng):本題考查了弧長(zhǎng)公式,理解B,C兩點(diǎn)恰好落在扇形AEF的上,即B、C在同一個(gè)圓上,得到△BDC是等邊三角形是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長(zhǎng)線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊(cè)答案